Open Access
Subscription Access
適用於網路入侵偵測不平衡資料之階層式多重分類器
Abstract
網路活動在近幾年行動裝置普及和雲端化趨勢的推動下有顯著成長,因此入侵偵測系統的存在是非常重要的。由於實際網路流量中相對於正常連接,攻擊的存在是少量的,因此許多基於統計模型的監督式入侵偵測系統不易偵測與分類這些少量但有害的攻擊。本研究中,提出一個基於多個分類器的結合並透過階層式分類平衡數據量的入侵偵測系統,依資料中各類的錯誤成本敏感程度與類包含資料的數目作為分割依據,利用多個二元分類器與一個多類分類器將資料中的每一類依序找出。此方法優點在於富彈性適合各種流行的分類演算法,同時不需修改原始訓練資料統計分布,可以降低入侵偵測中因為原始訓練資料集的各類資料數量相差過大造成的分類誤差,對錯誤成本較敏感的網路入侵資料平均成本也有降低。實驗與結果評估採用KDD CUP 99資料集入侵偵測資料集以及其修改後之ND-KDD資料集測試,在ND-KDD資料集實驗,四種演算法使用階層式多重分類器的錯誤率平均降低百分之十六,平均成本降低百分之十三。
Keywords
入侵偵測系統; 不平衡資料集; 階層式分類器
Citation Format:
張智傑 , 王勝德 , "適用於網路入侵偵測不平衡資料之階層式多重分類器," Communications of the CCISA, vol. 21, no. 2 , pp. 21-40, Apr. 2015.
張智傑 , 王勝德 , "適用於網路入侵偵測不平衡資料之階層式多重分類器," Communications of the CCISA, vol. 21, no. 2 , pp. 21-40, Apr. 2015.
Full Text:
PDFRefbacks
- There are currently no refbacks.
Published by Chinese Cryptology and Information Security Association (CCISA), Taiwan, R.O.C
CCCISA Editorial Office
E-mail: ccisa.editor@gmail.com