

Regular Paper

Communications_of_the_CCISA

Vol.30__No._2__May._2024

1

The fastest matrices multiplication using involutory matrix in

AES MixColumns-InvMixcolumns transformation

San Yuan Wang1, Fu Jung Kan2, Yan Haw Chen3*, Shui Hsiang Su4,

Ling Ling Dai5, Kes Shan Lin6

1,3,5,6Dept. of Information Engineering, I-Shou University, Kaohsiung, Taiwan 84008.
2,4Dept. of Electronic Engineering, I-Shou University, Kaohsiung, Taiwan 84008.

1sywang@isu.edu.tw, 2kanfujung@gmail.com, 3yanchen@isu.edu.tw, 4shsu@isu.edu.tw
5isu1113081a@cloud.isu.edu.tw, 6isu11103093a@cloud.isu.edu.tw

Abstract

 The traditional computer will be difference attacks by future quantum computer. Now, AES

seems a resistant primitive in the post quantum world, with a bigger security margin against

quantum computer attacks. In this paper, the key idea here is to propose a method with a

variations 2k2k=nn involutory matrix for enhancing diffusion data in AES MixColumns-

InvMixColumns step that the Branch Number of the confusion capability is increased n+1

where 1k  integer number, but the matrix multiplication is required a lot of the finite field

multiplications. A 16×16 involutory matrix for matrix multiplication needs 256 multiplications

and 240 additions for using encryption and decryption in AES MixColumns transformation. By

utilizing both properties, the addition of the same elements over GF(2m) results in zero

properties, and dividing the involutory matrix into four sets of submatrices circulant matrix

properties; the matrix multiplication can be simplified by Scheme 3 (16×16 matrix) that matrix

multiplications can use 81 multiplications and 260 additions with good branch number 17.

Using Scheme 3 and the proposed method of the multiplication running on Intel CPU, to

compare traditional matrix multiplication, the computational cost of matrix multiplication can

be reduced by ~67%. Finally, using Scheme 1, Scheme 2, and Scheme 3 into AES Cipher and

InvCipher procedure that the methods can increase encryption and decryption speed for data

transmission.

Keywords: AES, circulant matrix, involutory matrix, quantum computer

Regular Paper

Communications_of_the_CCISA

Vol.30__No._2__May._2024

2

1. Introduction

The Advanced Encryption Standard (AES) algorithm [1] was chosen as the encryption

standard in 1999, replacing the original Data Encryption Standard (DES) from among 15

candidates. It has since been widely adopted globally due to its quickly computational and robust

security features, establishing itself as the new standard in symmetric cryptography. In September 2000,

Rijndael was officially designated as FIPS PUB 197 [2], with a complete round including four steps:

SubBytes, ShiftRows, MixColumns, and AddRoundKey. Using larger matrices for AES

computation is proposed in reference [3] which the matrix utilizes a 16×16 involutoy matrix for

data diffusion. However, increasing data diffusion also reduces the speed of matrix multiplication

operations. When performing matrix operations, this matrix allows for rapid calculation,

providing comparable performance for both encryption and decryption. This method replaces

the original 44 cyclic matrices in MixColumns steps of the AES. Reference [4] enhances

encryption strength using 44 involutory matrix and 88 involutory matrices. There are

research directions suggested by searching methods for finding MDS matrices in [5-6]. There

are many block ciphers use Maximum Distance Separable (MDS) codes as diffusion layers [7-

9]. The well-known ciphers the Khazad [10] and ARIA [11] are using involutory matrix. The

diversity circulant matrices are used in the modern cryptographic method in AES [12]. As

descried in this paper, may be designed as a circuit in VLSI, see [13-16], which can be used to

decrease logic gates. In [17] presents a quantum circuit to implement the S-box of AES. The matrix

multiplication needs a finite filed multiplication for speeding operation [18-19]. The method

also can provide the security of the data transfer to the health monitoring system on ARM-based

microcontrollers [20]. We propose using involutory matrix for encoding and decoding for AES

MixColumns steps that is not required the inverse polynomial A(x), denoted as A-1(x) [21-22].

The method using the 1616 involutory matrix would be more difficult for attackers to locate

and thus less prone to attacks in general. The matrix product operation can be reduction like as

circulant matrix method. The remaining portion of this paper is organized as follows: Section

2 introduces enhanced security in AES MixColumns step. Section 3 discusses the multiplication

in finite field concepts necessary for further developments, and also proposes methods to reduce

the number of multiplications in different nn involutory matrix products for the AES

encryption-decryption which these methods are called Scheme 1, Scheme 2, and Scheme 3,

respectively. Section 4 presents a performance analysis of AES Cipher-InvCipher on Intel CPU.

Section 5 concludes the paper.

Regular Paper

Communications_of_the_CCISA

Vol.30__No._2__May._2024

3

2. Enhanced security in AES MixColumns transformation

 This paper mainly is not focused on fix matrix element in AES MixColumns transformation.

We aim to enhance security of AES algorithm with different matrix size for MixColumns steps

that can be for increasing security. Since, the determining the key would require an exhaustive

search and must to know what kind of matrix element in Table A as shown in Figure 1 for

encrypting and decrypting. In other words, the key cannot be known from the plaintext and the

ciphertext because there are not using AES standard MixColumns (02x, 03x, 01x, 01x) and

InvMixColumns (0Ex, 0Bx, 0Dx, 09x) transformation. Furthermore, it might be sent different

the involutory matrix elements by elliptic curve cryptography of the ECDH algorithm or RSA

algorithm to receiver. In Table A, the value of elements from first row involutory MDS matrix

(Hadamard matrix) is Hexadecimal.

SubBytes MixColumnsAddRoundKey AddRoundKey

Key Expansion

InvSubBytes InvMixColumnsAddRoundKey AddRoundKey

Key Expansion

Table A

Table A

SubBytes

AddRoundKey

InvSubBytes

AddRoundKey

Plaintext

Plaintext

Ciphertext

Ciphertext

n×n Matrix elements

4×4 Had(01x,02x,04x,06x)

8×8 Had(01x,03x,04x,05x,06x,08x,0bx,07x)

16×16
Had(01x,03x,04x,05x,06x,07x,08x,09x,

0ax,0bx,0cx,0dx,0ex,10x,02x,1ex)

n×n Matrix elements

4×4 Had(01x,02x,04x,06x)

8×8 Had(01x,03x,04x,05x,06x,08x,0bx,07x)

16×16
Had(01x,03x,04x,05x,06x,07x,08x,09x,

0ax,0bx,0cx,0dx,0ex,10x,02x,1ex)

Key Expansion

Figure 1: The n×n involutory matrix elements for AES-like cipher-invcipher

3. Fast matrix multiplication in AES MixColumns transformation

The method for computing of involutory matrix is described herein that is based on the 2-

point cyclic convolution matrix. This section consists of three subsections, in the first

subsection describes different method of the multiplication over finite field for matrix

multiplication that can be also applied to matrix operation. Besides, uses two point cyclic matrix

Regular Paper

Communications_of_the_CCISA

Vol.30__No._2__May._2024

4

the properties for reducing multiplication of the matrix product, Scheme 1, Scheme 2 and

Scheme 3 are 4×4, 8×8, and 16×16 matrices for reducing multiplications, respectively.

3.1 Multiplication over GF(2m)

Let
1

0
()

m i

ii
a x a x




 and

1

0
()

m i

ii
b x b x




 be the polynomials over GF(2m), where ai, bi

∈ {0, 1}. The finite field addition is defined as:

() () (),c x a x b x  (1)

The symbol of “+” is XOR operation. The finite field multiplication is defined as:

() () () mod (),c x a x b x f x  (2)

where the modulo f(x) is irreducible polynomial
8 4 3() 1f x x x x x     in the AES

algorithm. In (2), the a(x) polynomial can be form as follows:

 2 3 2 2

7 6 5 4 3 2 1 0() () () ()a x a x a x a x a x a x a x a x a        (3)

The polynomial b(x) is represented as B. In (3) submitted (2) as following formula,

 2 3 2 2

7 6 5 4 3 2

1 0

() () mod () () mod ()

 ()

c x a Bx a Bx a B x f x a Bx a Bx a B x f x

a Bx a B

     

 

(4)

Table 1: Lookup table LTB(𝑎𝑖 , 𝑎𝑗 , 𝑎𝑘) for multiplication over GF(28)

LTB

[, ,]i j ka a a

2
() mod ()

i j k
a Bx a Bx a B f x  Using logical operation by python

LTB[0,0,0] 0 0

LTB[0,0,1] B B

LTB[0,1,0] LTB[0,0,1] x mod f(x) (LTB[0,0,1] <<1)&0XFF ^ FT[B>>7]&0X01

LTB[1,0,0] LTB[0,1,0] x mod f(x) (LTB[0,1,0] <<1)&0XFF ^ FT[LTB[0,1,0]>>7]&0X01

LTB[0,1,1] LTB[0,1,0] + LTB[0,0,1] LTB([,1,0] ^ LTB[0,0,1]

LTB[1,0,1] LTB[1,0,0] + LTB[0,0,1] LTB[1,0,0] ^ LTB[0,0,1]

LTB[1,1,0] LTB[1,0,0] + LTB[0,1,0] LTB[1,0,0] ^ LTB[0,1,0]

LTB[1,1,1] LTB[1,1,0] + LTB[0,0,1] LTB[1,1,0] ^ LTB[0,0,1]

Regular Paper

Communications_of_the_CCISA

Vol.30__No._2__May._2024

5

In Table 1, LTB(0,0,1)=B, LTB(0,0,1)x mod f(x) is expression mod ()Bx f x that can be

represented as (𝐵<<1)&0𝑥FF^FT((𝐵 >> 7)&0𝑥01). (e.g., FT(0)=0, FT(1)=𝑥4 + 𝑥3 + 𝑥 +

1, binary 11011, Hex 0x1b). The modulo operation to make a table is as shown in Table 2. The

method is rewritten in python programming as below:

Table 2: Lookup table FT(𝑎𝑖 , 𝑎𝑗 , 𝑎𝑘) for modulo operation

 FT[𝑎𝑖 , 𝑎𝑗 , 𝑎𝑘]

FT[0,0,0]= FT[0]=0 FT[0,1,1]= FT[3]=0x2d FT[1,1,0]= FT[6]=0x5a

FT[0,0,1]= FT[1]=0x1b FT[1,0,0]= FT[4]=0x6c FT[1,1,1]= FT[7]=0x41

FT[0,1,0]= FT[2]=0x36 FT[1,0,1]= FT[5]=0x77

The multiplication over GF(2m) by python program

Def GFM(a,b):

LTB=[0]*8

LTB[0]=0; LTB[1]=b; LTB[2]=((b<<1)&0xFF)^FT[b>>7]; LTB[3]=LTB[2]^LTB[1]

LTB[4]=(LTB[2]<<1)&0XFF^FT[LTB[2]>>7]; LTB[5]=LTB[4]^LTB[1];

LTB[6]=LTB[4]^LTB[2]

LTB[7]=LTB[6]^LTB[1]

C=LTB[(a>>5)]

C=((C<<3)&0XFF)^FT[C>>5]^LTB[(a>>2)&0X7]

C=((C<<2)&0XFF)^FT[C>>6]^LTB[a&0X3]

return C

3.2 Reducing the multiplications in 44 involutory matrix for matrix multiplication

In AES MixColumns transformation that need four times matrix multiplication by 44 matrix.

The product of the involutory matrix A and matrix B, is presented form as:

0 0 1 2 3 0

1 1 0 3 2 1

2 2 3 0 1 2

3 3 2 1 0 3

 .

d a a a a b

d a a a a b

d a a a a b

d a a a a b

     
     
     
     
     
     

 (5)

Regular Paper

Communications_of_the_CCISA

Vol.30__No._2__May._2024

6

Where

0

1

2

3

D

d

d

d

d

 
 
 
 
 
  

 ,

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

a a a a

a a a a
A

a a a a

a a a a

 
 
 
 
 
 

, and

0

1

2

3

 = .

b

b
B

b

b

 
 
 
 
 
 

The matrix A can be represented as 0 1 2 3(, , ,)Had a a a a . In (5), the matrix D is the product of

the matrix A and the matrix B that is needed 16 multiplications and 12 additions (16M, 12A)

listed as follows:

(16M, 12A)

0 0 0 1 1 2 2 3 3

1 1 0 0 1 3 2 2 3

2 2 0 3 1 0 2 1 3

3 3 0 2 1 1 2 0 3

d a b a b a b a b

d a b a b a b a b

d a b a b a b a b

d a b a b a b a b

   

   

   

   

Using the 22 cyclic matrix property for matrices multiplication is given by:

   

   
0 0 1 0 0 1 0 1 10

1 0 0 0 1 0 1 011

y
 .

a a a b b a a bb

a a a b b a a bby

        
        

       
 (6)

Therefore, in (6) only requires 3 multiplications and 4 additions, namely, (3M, 4A) as shown

in Table 1.

Table 3: The 22 cyclic matrix with (3M, 4A).

 0 0 1 0()t b b a  1 0 1t a a 

 0 0 1 1d t t b  1 0 1 0d t t b 

In Table 3, two entries 0 a and 1a are fix data, the item 1 0 1s a a  can be precomputed in

the program. Thus, the 22 cyclic matrix method only uses 3 multiplications and 3 additions.

The python program is as shown below.

The 22 involutory matrix (3M, 4A)

def FGH2(a0,a1,b0,b1):

 t0=GFM((b0^b1),a0)

 t1=a0^a1

 d0=t0^GFM(t1,b1)

Regular Paper

Communications_of_the_CCISA

Vol.30__No._2__May._2024

7

 d1=t0^GFM(t1,b0)

 return [d0,d1]

Theorem 1 Let A be any nn involutory matrix, where 2kn  , then the matrix A can be

partitioned into four cyclic matrices, in which entries are ()
2 2

n n
 submatrix where k is

greater than 1.

Using (4), by Theorem 1, the 44 involutory matrix can be partitioned into four as,

0 0 1 2 3 0

1 1 0 3 2 1

2 2 3 0 1 2

3 3 2 1 0 3

 .

d a a a a b

d a a a a b

d a a a a b

d a a a a b

     
     
     
     
     
     

 (7)

where
2 0 1 2 30

0 1 0 1

3 1 0 3 21

, , , ,
d a a a ad

D D A A
d a a a ad

      
         
       

20

0 1

31

, and .
bb

B B
bb

  
    
   

In (7), it can be used to reduce the multiplications in term of Equation (6) form as follows:

   

   
0 0 1 0 1 10

0 0 1 0 1 01

2 2
,

2 2

A B B A A BD F G

A B B A A BD F H

       
            

 (8)

where the symbol of  is represented the matrix addition,

0 1 20

0 0 1

1 0 31

2 ()
a a bb

F A B B
a a bb

   
      

   
,

0 2 1 3 2

0 1 1

1 3 0 2 3

2 () ,
a a a a b

G A A B
a a a a b

    
      

    
and

0 2 1 3 0

0 1 0

1 3 0 2 1

 2 () .
a a a a b

H A A B
a a a a b

    
      

    
 So that, the matrices F2, G2, and H2 can call

function FGH2() yields:

0 1 0 2 1 3
2 2(, , ,)F FGH a a b b b b  

0 2 1 3 2 3
2 2(+ , , ,)G FGH a a a a b b 

0 2 1 3 0 1
2 2(+ , , ,)H FGH a a a a b b 

(9)

Obviously, the matrix F2 is calling function FGH2() with parameters that does not need

combination of the sets with element bi. The matrix G2 and H2 are calling function FGH2()

Regular Paper

Communications_of_the_CCISA

Vol.30__No._2__May._2024

8

with parameters that are combination of the sets with element ai. In (9), rewrite the terms in

0 0 2 1 1 3and t a a t a a    as follows:

0 1 1 3 0 2
2 2(, , ,)F FGH a a b b b b  

0 1 2 3
2 2(, , ,)G FGH t t b b

0 1 0 1
2 2(, , ,)H FGH t t b b

(10)

Next, the 44 involutory matrix for matrix multiplication is given as

0

1

2 2

2 2

D F G

D F H

   
   

  
,

where the symbol of  is represented the matrix addition. In the simplified case, the matrix

multiplication can be performed by 9 multiplications and 20 additions (9M, 20A). Two items

0 0 2 1 3 1 and t a a t a a    are known because the value ia of the elements of the matrix A,

can be precomputed in the program. So that the method only uses 9 multiplications and 18

additions, that is remarked as (9M, 18A). The 44 involutory matrix for the matrix

multiplication is written by python program that is called Scheme 1. So that, Scheme 1 is need

4 times in AES MixColumns transformation that there are 36 multiplications and 72 additions

(36M, 72A).

Scheme 1: 44 involutory matrix (9M, 20A)

def FGH4(a0,a1,a2,a3,b0,b1,b2,b3):

 t0=a0^a2; t1=a1^a3

 F2=FGH2(a0,a1,b0^b2,b1^b3)

 G2=FGH2(t0,t1,b2,b3)

 H2=FGH2(t0,t1,b0,b1)

 d0=F2[0]^G2[0]

 d1=F2[1]^G2[1]

 d2=F2[0]^H2[0]

 d3=F2[1]^H2[1]

 return [d0,d1,d2,d3]

3.3 Reducing the multiplications in 88 involutory matrix for matrix multiplication

Matrix multiplication is needed M=64, A=56, where, M is multiplications, A is additions.

The matrix is 8×8 involutory matrix in AES MixColumns transformation that is required twice

times matrix multiplication:

Regular Paper

Communications_of_the_CCISA

Vol.30__No._2__May._2024

9

0 0 1 2 3 4 5 6 7 0

1 1 0 3 2 5 4 7 6

2 2 3 0 1 6 7 4 5

3 3 2 1 0 7 6 5 4

4 4 5 6 7 0 1 2 3

5 5 4 7 6 1 0 3 2

6 6 7 4 5 2 3 0 1

7 7 6 5 4 3 4 1 0

d a a a a a a a a b

d a a a a a a a a b

d a a a a a a a a

d a a a a a a a a

d a a a a a a a a

d a a a a a a a a

d a a a a a a a a

d a a a a a a a a

   
   
   
   
   
   
   
   
   
   
   
      

1

2

3

4

5

6

7

b

b

b

b

b

b

 
 
 
 
 
 
 
 
 
 
 
  

, (11)

where

0 4

1 5

0 1

2 6

3 7

,

b b

b b
B B

b b

b b

   
   
    
   
   
   

,

0 1 2 3

1 0 3 2

0

2 3 0 1

3 2 1 0

a a a a

a a a a
A

a a a a

a a a a

 
 
 
 
 
 

,

4 5 6 7

5 4 7 6

1

6 7 4 5

7 6 5 4

a a a a

a a a a
A

a a a a

a a a a

 
 
 
 
 
 

.

By (11), it can be used to reduce the multiplications in term of Equation (6) form as follows:

0 0 1 0 1 10

0 0 1 0 1 01

() () 4 4
,

() () 4 4

A B B A A BD F G

A B B A A B F HD

       
    

       
.

where the symbol of  is represented the matrix addition, 0 0 14 ()F A B B  ,

0 1 14 ()G A A B  , and 0 1 04 ()H A A B  .

0 1 2 3 0 4

1 0 3 2 1 5

2 3 0 1 2 6

3 2 1 0 3 7

4

a a a a b b

a a a a b b
F

a a a a b b

a a a a b b

   
   


   
   
   

   

 (12)

In (12), the matrix F4 calling function FGH4() is as below.

4 0 1 2 3 0 4 1 5 2 6 3 74 (, , , , , , ,)F FGH a a a a b b b b b b b b     ,

0 4 1 5 2 6 3 7 4

1 5 0 4 3 7 2 6 5

2 6 3 7 0 4 1 5 6

3 7 2 6 1 5 0 4 7

4 .

a a a a a a a a b

a a a a a a a a b
G

a a a a a a a a b

a a a a a a a a b

      
   

   
   
      
   

      

 (13)

A0

A0

A1

A1

B0

B1

D0

D1

Regular Paper

Communications_of_the_CCISA

Vol.30__No._2__May._2024

10

The matrix G4 calling function FGH4() is rewritten as below:

4 0 4 1 5 2 6 3 7 4 5 6 74 (, , , , , , ,)G FGH a a a a a a a a b b b b    

0 4 1 5 2 6 3 7 0

1 5 0 4 3 7 2 6 1

2 6 3 7 0 4 1 5 2

3 7 2 6 1 5 0 4 3

4 .

a a a a a a a a b

a a a a a a a a b
H

a a a a a a a a b

a a a a a a a a b

      
   

   
   
      
   

      

 (14)

In (14), matrix H4 calling function FGH4() is rewritten as below.

4 0 4 1 5 2 6 3 7 0 1 2 34 (, , , , , , ,)H FGH a a a a a a a a b b b b     .

It needs 27 multiplications and 76 additions, namely, (27M, 76A), the two items can be replaced

as 0 0 4 ,t a a  1 1 5 ,t a a  2 2 6t a a  and 3 3 7t a a  that precomputing for matrix

multiplication is only 72 additions, namely, (27M, 72A). Consequently, the matrix

multiplication is simplified in MixColumns step in AES that needs two times 8x8 matrix

multiplication, the operation is needs 54 multiplications and 148 additions, namely, (54M,

144A). The 88 involutory matrix for matrix multiplication is called Scheme 2 that can further

be rewritten by python program as follows:

Scheme 2: 88 involutory matrix (27M, 76A)

def FGH8(a0,a1,a2,a3,a4,a5,a6,a7,b0,b1,b2,b3,b4,b5,b6,b7):

 t0=a0^a4;t1=a1^a5;t2=a2^a6;t3=a3^a7

 F=FGH4(a0,a1,a2,a3,b0^b4,b1^b5,b2^b6,b3^b7)

 G=FGH4(t0,t1,t2,t3,b4,b5,b6,b7)

 H=FGH4(t0,t1,t2,t3,b0,b1,b2,b3)

 D=[0]*8

 for i in range (0,len(F)):

 D[i]=F[i]^G[i]

 for i in range (0,len(F)):

 D[i+4]=F[i]^H[i]

 return D

Regular Paper

Communications_of_the_CCISA

Vol.30__No._2__May._2024

11

3.4 Reducing the multiplications in 1616 involutory matrix for matrix multiplication

Using the 1616 matrix is only a matrix multiplication in AES MixColumns, which is 256

multiplications and 240 additions. A 16×16 involutory matrix for matrix multiplication is as

shown below.

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14

2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12

3

4

5

6

7

8

9

10

11

12

13

14

15

d a a a a a a a a a a a a a a a a

d a a a a a a a a a a a a a a a a

d a a a a a a a a a a a a a a a

d

d

d

d

d

d

d

d

d

d

d

d

d

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

13

3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12

4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11

5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10

6 7 4 5 2 1 0 1 14 15 12 13 10 11 8 9

7 6 5 4 1 2 1 0 15 14 13 12 11 10 9 8

8 9 10

a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a 11 12 13 14 15 0 1 2 3 4 5 6 7

9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6

10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5

11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4

12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3

13 12 15 14 9 8

a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a

0

1

2

3

4

5

6

7

8

9

10

11

12

11 10 5 4 7 6 1 0 3 2 13

14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1 14

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15

b

b

b

b

b

b

b

b

b

b

b

b

b

a a a a a a a a a b

a a a a a a a a a a a a a a a a b

a a a a a a a a a a a a a a a a b

  
  
  
  
  
  
  
  
  
  
  
  
  
  
 
 
 
 
 
 
 
 
 
 
  
















 
 
 
 
 
 
 
 
 
 



The matrix can be used to reduce the multiplications in term of Equation (6) form as follows:

0 0 1 0 1 10

0 0 1 0 1 01

() () 8 8
,

() () 8 8

A B B A A BD F G

A B B A A B F HD

       
    

       

where the symbol of  is the matrix addition, the matrices 0 0 18 ()F A B B  ,

0 1 18 ()G A A B  , and 0 1 08 ()H A A B  can be representation form as below:

A0 A1

A1 A0

B0

B1

D0

D1

Regular Paper

Communications_of_the_CCISA

Vol.30__No._2__May._2024

12

0 1 2 3 4 5 6 7 0 8

1 0 3 2 5 4 7 6 1 9

2 3 0 1 6 7 4 5 2 10

3 2 1 0 7 6 5 4 3 11

4 5 6 7 0 1 2 3 4 12

5 4 7 6 1 0 3 2 5 13

6 7 4 5 2 3 0 1 6 14

7 6 5 4 3 4 1 0 7

8

a a a a a a a a b b

a a a a a a a a b b

a a a a a a a a b b

a a a a a a a a b b
F

a a a a a a a a b b

a a a a a a a a b b

a a a a a a a a b b

a a a a a a a a b

 
 


 
  
 

 
  
 

 
  
 

   15

.

b

 
 
 
 
 
 
 
 
 
 
 
  

The matrix F8 calling function FGH8() is written as below.

8 0 1 2 3 4 5 6 7 0 8 1 9 2 10 3 11 4 12 5 13 6 14

7 15

8 (, , , , , , , , , , , , , , ,

)

F FGH a a a a a a a a b b b b b b b b b b b b b b

b b

       



0 8 1 9 2 10 3 11 4 12 5 13 6 14 7 15

1 9 0 8 3 11 2 10 5 13 4 12 7 15 6 14

2 10 3 11 0 8 1 9 6 14 7 15 4 12 5 13

3 11 2 10 1 9 0 8 7 15 6 14 5 13 4 12

4 12 5 13

8

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a
G

a a a a a

       

       

       

       


 

8

6 14 7 15 0 8 1 15 2 10 3 11

5 13 4 12 7 15 6 14 1 9 0 8 3 11 2 10

6 14 7 15 4 12 5 13 2 10 3 9 0 8 1 9

7 15 6 14 5 13 4 12 3 11 4 10 1 9 0 8

b

b

a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

 
 
 
 
 
 
      
 

        
        
 

         

9

10

11

12

13

14

15

.

b

b

b

b

b

b

 
 
 
 
 
 
 
 
 
 
 
  

The matrix G8 calling the function FGH8() is as follows:

8 0 8 1 9 2 10 3 11 4 12 5 13 6 14 7 15 8 9 10 11 12

13 14 15

8 (, , , , , , , , , , , , ,

 , ,)

G FGH a a a a a a a a a a a a a a a a b b b b b

b b b

        

0 8 1 9 2 10 3 11 4 12 5 13 6 14 7 15

1 9 0 8 3 11 2 10 5 13 4 12 7 15 6 14

2 10 3 11 0 8 1 9 6 14 7 15 4 12 5 13

3 11 2 10 1 9 0 8 7 15 6 14 5 13 4 12

4 12 5 13

8

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a
H

a a a a a

       

       

       

       


 

0

6 14 7 15 0 8 1 15 2 10 3 11

5 13 4 12 7 15 6 14 1 9 0 8 3 11 2 10

6 14 7 15 4 12 5 13 2 10 3 9 0 8 1 9

7 15 6 14 5 13 4 12 3 11 4 10 1 9 0 8

b

b

a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

 
 
 
 
 
 
      
 

        
        
 

         

1

2

3

4

5

6

7

.

b

b

b

b

b

b

 
 
 
 
 
 
 
 
 
 
 
  

I

Regular Paper

Communications_of_the_CCISA

Vol.30__No._2__May._2024

13

The matrix H8 calling function FGH8() is written as below.

8 0 8 1 9 2 10 3 11 4 12 5 13 6 14 7 15 0 1 2 3 4 58 (, , , , , , , , , , , , ,H FGH a a a a a a a a a a a a a a a a b b b b b b        

6 7, ,)b b

Matrix multiplication, using 4×4 matrix needs 16 multiplications and 12 additions; using 8×8

matrix needs 64 multiplications and 56 additions; using 16×16 matrix needs 256 multiplications

and 240 additions. Using Scheme 1 needs 36 multiplications and 80 additions; using Scheme 2

needs 27 multiplications and 76 additions; Scheme 3 only uses 81 multiplications and 260

additions. In summary, the number of the multiplications and memory sizes for different

Schemes are as shown in Table 4. In Table 4, the symbol “M” represents the multiplications

and the symbol “A” represents the additions.

Scheme 3: 1616 involutory matrix (81M, 260A)

def FGH16(a0,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,b0,b1,b2,b3,b4,b5,b6,b7,

b8,b9,b10,b11,b12,b13,b14,b15):

 t0=a0^a8;t1=a1^a9;t2=a2^a10;t3=a3^a11;t4=a4^a12;t5=a5^a13;t6=a6^a14;t7=a7^a15

F=FGH8(a0,a1,a2,a3,a4,a5,a6,a7,

 b0^b8,b1^b9,b2^b10,b3^b11,b4^b12,b5^b13,b6^b14,b7^b15)

 G=FGH8(t0,t1,t2,t3,t4,t5,t6,t7,b8,b9,b10,b11,b12,b13,b14,b15)

 H=FGH8(t0,t1,t2,t3,t4,t5,t6,t7,b0,b1,b2,b3,b4,b5,b6,b7)

 D=[0]*16

 for i in range (0,len(F)):

 D[i]=F[i]^G[i]

 for i in range (0,len(F)):

 D[i+8]=F[i]^H[i]

 return D

Note that the traditional circulant matrix multiplication in AES, which has to find inverse matrix

for decryption processes. However, Scheme 1, Scheme 2 and Scheme 3 can be used both

encryption and decryption in AES MixColumns and InvMixColumns transformation.

Table 4: Different schemes need operations and memory sizes.

Matrix

multiplication
(M, A)

Memory

sizes
Schemes (M, A)

Memory

sizes

4x4 matrix (64M, 48A) 4 bytes Scheme 1 (36M, 80A) 12 bytes

Regular Paper

Communications_of_the_CCISA

Vol.30__No._2__May._2024

14

8x8 matrix (128M, 84A) 8 bytes Scheme 2 (54M, 152A) 48 bytes

16x16 matrix (256M, 240A) 16 bytes Scheme 3 (81M, 260A) 168 bytes

4. Simulation results

 The different methods of the multiplication execute time running 100,000 times in Intel

Core i9-12900 @ 2.4GHz by python program and the results are given in Table 5.

Table 5: Different schemes of multiplication executes time.

Multiplication Execution time Memory size

Russian Peasant algorithm 0.17 s 0 bytes

Horner's rule [21] 0.10 s 8 bytes

The proposed method 0.09 s 16 bytes

The proposed method is faster than Horner’s rule. As a result, the finite field multiplication is

utilized for performing matrix multiplication in the 4×4 involutory matrix, designated as A4×4;

the 8×8 involutory matrix, designated as A8×8, and the 16×16 involutory matrix, designated as

A16×16, as detailed below:

4 4

01 02 04 06

02 01 06 04

04 06 01 02

06 04 02 01

A



 
 
 
 
 
 

,
8 8

01 03 04 05 06 08 0 07

03 01 05 04 08 06 07 0

04 05 01 03 0 07 06 08

05 04 03 01 07 0 08 06

06 08 0 07 01 03 04 05

08 06 07 0 03 01 05 04

0 07 06 08 04 05 01 03

07 0 08 06 05 04 03 01

B

B

B

B

B

B

B

B

A 

 
 
 
 
 
 
 
 
 
 
 
 

, and

Regular Paper

Communications_of_the_CCISA

Vol.30__No._2__May._2024

15

16 16

01 03 04 05 06 07 08 09 0 0 0 0 0 10 02 1

03 01 05 04 07 06 09 08 0 0 0 0 10 0 1 02

04 05 01 03 08 09 06 07 0 0 0 0 02 1 0 10

05 04 03 01 09 08 07 06 0 0 0 0 1 02 10 0

06 07 08 09 01 03 04 05 0 10 02 1 0 0 0 0

07 06 09 08 03 01 05 04 10 0 1 02 0 0 0 0

0

A B C D E E

B A D C E E

C D A B E E

D C B A E E

E E A B C D

E E B A D C

A  

8 09 06 07 04 05 01 03 02 1 0 10 0 0 0 0

09 08 07 06 05 04 03 01 1 02 10 0 0 0 0 0

0 0 0 0 0 10 02 1 01 03 04 05 06 07 08 09

0 0 0 0 10 0 1 02 03 01 05 04 07 06 09 08

0 0 0 0 02 1 0 10 04 05 01 03 08 07 06 07

0 0 0 0 1 02 10 0 05 04 03 01 09 08 07 06

0 10 02 1 0

E E C D A B

E E D C B A

A B C D E E

B A D C E E

C D A B E E

D C B A E E

E E 0 0 0 06 07 08 09 01 03 04 05

10 0 1 02 0 0 0 0 07 06 09 08 03 01 05 04

02 1 0 10 0 0 0 0 08 09 06 07 04 05 01 03

1 02 10 0 0 0 0 0 09 08 07 06 05 04 03 01

.

A B C D

E E B A D C

E E C D A B

E E D C B A

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note that the value of the elements in the involutory matrix is Hexadecimal.

Using the traditional matrix multiplication and Schemes are for evaluating procedure running

10,000 times. There are many methods for computing matrix multiplication, in which using the

proposed multiplication for Schemes is very fast when compared other traditional methods of

the matrix multiplication as shown in Table 6.

Table 6: The computing time of the matrix multiplication.

Multiplication

algorithms

(4×4)

matrix

(8×8)

matrix

(16×16)

matrix

SCM 1

(9M,20A)

SCM 2

(27M,80A)

SCM 3

(54M,160A)

Reducing

Percentage

(16×16)- SCM 3

/(16×16)100%

Russian

Peasant
0.29s 1.14s 4.60s 0.16s 0.48s 1.48s 68%

Horner's rule 0.19s 0.73s 2.88s 0.10s 0.31s 0.95s 67%

The proposed

method
0.16s 0.64s 2.55s 0.09s 0.27s 0.83s 67%

These matrices of diffusion data are used in the AES MixColumns transformation calculation

as shown in Figure 2. Scheme 1 needs ShiftRows function, because the diffusion matrix of the

size is smaller. Scheme 2 and Scheme 3 in matrix size have larger diffusion so that does not

need ShiftRows functions.

Regular Paper

Communications_of_the_CCISA

Vol.30__No._2__May._2024

16

ShiftRows

MixColumns

AddRoundKey

SubBytes

4×4 Matrix

Matrix

multiplication

Plaintext

Ciphertext

4×4 Matrix

Matrix

multiplication

4×4 Matrix

Matrix

multiplication

4×4 Matrix

Matrix

multiplication

Plaintext

Scheme 1

Key
Expansion

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

MixColumns

AddRoundKey

SubBytes

8×8 Matrix

Matrix

multiplication

8×8 Matrix

Matrix

multiplication

Scheme 2

Key
Expansion

AddRoundKey

SubBytes

AddRoundKey

Ciphertext

Plaintext

MixColumns

AddRoundKey

SubBytes

16×16 Matrix

Matrix

multiplication

Scheme 3

Key
Expansion

AddRoundKey

SubBytes

AddRoundKey

Ciphertext

Figure 2: the matric of the different sizes using in the AES

Using the traditional methods and Schemes by python language are for evaluating encryption

procedure with different AES key lengths. The keys sizes are 128, 192, and 256 bits for running

cipher 10,000 execution time as shown in Table 7, which it can be into graphical from in Figure

3. The trade-off between matrix size and speed performance in AES Cipher would suggest that

Scheme 2 (88 matrix) is better suitable for embedded systems that is faster than traditional

matrix multiplication (44 matrix) running in AES MixColumns transformation; The keys of

the lengths 128, 192, 256 bits can be reduced execution time ~12%, ~12%, and ~12%,

respectively.

Table 7: The keys lengths of 128, 192, and 256 bits execution time with different matrix size.

Matrix size AES 128 AES 192 AES 256

4x4 matrix 6.27 7.62 9.04

Scheme1 3.57 4.30 5.13

8x8 matrix 11.80 14.46 17.15

Scheme 2 5.34 6.56 7.75

16x16 matrix 23.01 28.04 33.21

Scheme 3 7.95 9.78 11.67

Regular Paper

Communications_of_the_CCISA

Vol.30__No._2__May._2024

17

Figure 3: AES execution time with the different key lengths

5. Conclusion

 To summarize, this study showed herein that the computational complexity matrix

multiplication over GF(28) can be minimized by dividing the matrix into four submatrices and

2-point cyclic convolution property. In comparison for each of the matrix sizes, in AES a key

size of 128 bits, 192 bits, and 256 bits, Scheme 2 can be run on MixColumns step of the AES

faster than (16M, 12A) method. Scheme 1, Scheme 2, and Scheme 3 can also be used for

different key sizes that you need cryptographic strength. Scheme 1 and Scheme 2 matrix

multiplication are fast than Scheme 3 for encryption and decryption. However, Scheme 3

exhibits a superior branch number for enhancing data security. When using Scheme 2 and

Scheme 3, in AES algorithm can remove ShiftRows step that is illustrated in Figure 1. In the

future, Scheme 1, Scheme 2, and Scheme 3 could also be utilized in VLSI circuit design to

reduce the number of logic gates required for the MixColumns and InvMixColumns

transformations.

6. Acknowledgements

This study was supported in part by National Science and Technology Council NIST 111-

2221-E-214-014 and NIST 112-2813-C-214-021.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

AES 128 AES 192 AES 256

se
co

n
d

s

4x4 matrix

Scheme1

8x8 matrix

Scheme 2

16x16 matirx

Scheme 3

Regular Paper

Communications_of_the_CCISA

Vol.30__No._2__May._2024

18

References

[1] J. Daemen, V. Rijmen, AES proposal: Rijndael document version 2, 1999.

[2] FIPS 197, Advanced Encryption Standard (AES) is updated by NIST FIPS 197-upd1, 2023

https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.197.pdf

[3] J. Nakahara, E. Abrahao, “A new invoutory MDS matrix for the AES,” International

Jourmal of newtwork security, vol. 9, no. 2, pp. 109-116, 2009.

[4] P. Junod, S. Vaudenay, “Perfect diffusion primitives for block ciphers. building efficient

MDS Matrices,” Lecture Notes in computer science, vol 3357, 2004.

https://doi.org/10.1007/978-3-540-30564-4_6

[5] J. Lacan and J. Fimes, “Systematic MDS erasure codes based on vandermonde matrices,”

IEEE Trans. Commun. Lett., vol. 8, no. 9, pp. 570-572, 2004.

[6] G. Murtaza and N. Ikram, “Direct exponent and scalar multiplication classes of an MDS

matrix,” IACR, http://eprint.iacr.org/2011/151, 2011.

[7] D. Kwon, S. H. Sung, J. H. Song and S. Park, “Design of Block Ciphers and Coding

Theory,” Trends in Mathematics, vol. 8, no. 1, pp. 13-20, 2005.

[8] B. W. Koo, H. S. Jang, J. H. Song, “Constructing and Cryptanalysis of a 16x16 Binary

Matrix as a Diffusion Layer,” Proceedings of Information Security Applications: 4th

International Workshop (WISA2003), Lecture Notes in Computer Science, Springer-

Verlag, vol. 2908, pp. 489-503, 2003.

[9] B. W. Koo, H. S. Jang, J. H. Song, “On Constructing of a 32x32 binary matrix as a diffusion

layer for a 256-bit block cipher,” Proceedings of International Conference on Information

Security and Cryptology, Lecture Notes in Computer Science, vol. 4296, pp. 51-64,

Springer-Verlag, 2006.

[10] P. S. L. M. Barreto and V. Rijmen, “The Khazad legacy-level block cipher,” First open

NESSIE Workshop, Leuven, 2000.

[11] D. Kwon, J. Kim, S. Park, S.H. Sung, Y. Sohn, J.H. Song, Y. Yeom, E-J. Yoon, S, Lee, J.

Lee, S. Chee, D. Han, and J. Hong, “New block cipher: ARIA,” Proceedings of

International Conference on Information Security and Cryptology, Lecture Notes in

Computer Science, vol. 2971, pp. 432-445, 2004.

[12] M. H. Jing, J. H. Chen, and Z. H. Chen, “Diversified Mixcolumn transformation of AES,”

Proc. Int. Conf. ICICS 2007, Singapore, December, pp. 10-13, 2007.

[13] M. H. Jing and Z. H. Chen, “System for high-speed and diversified AES using FPGA,”

Microprocessors and Microsystems, vol. 31, no. 12, pp. 94–102, 2006.

http://eprint.iacr.org/2011/151

Regular Paper

Communications_of_the_CCISA

Vol.30__No._2__May._2024

19

[14] G. Selimis, A. Fournaris, and O. Koufopavlou, “Applying low power techniques in AES

MixColumn/InvMixColumn transformations,” IEEE Int. Conf, Electronics, Circuits and

Systems ICECS’06, France, December, pp. 10-13, 2006.

[15] A. Maximov, “AES MixColumn with 92 XOR gates,” Cryptology ePrint Archive, Report

2019/833, https://eprint.iacr.org/2019/833, 2019.

[16] C. H. Yang and Y. S. Chien, “FPGA Implementation and Design of a Hybrid Chaos-AES

Color Image Encryption Algorithm,” Symmetry, vol. 12, no. 2, pp. 1-17, 2020.

[17] B. Langenberg, H. Pham and R. Steinwandt, "Reducing the Cost of Implementing the

Advanced Encryption Standard as a Quantum Circuit," in IEEE Transactions on Quantum

Engineering, vol. 1, no. 2500112, pp. 1-12, 2020.

[18] F. J. MacWilliams and N. J. Sloane, The theory of error-correcting codes: North-Holland,

1nd edn, 1978.

[19] I. Mahboob, “Lookup table based multiplication technique for GF(2m) with cryptographic

significance,” IEE Proc. Commun., vol. 152, no. 6, pp.965-974, 2005.

[20] W. S. Pienaar and M. Reza, “Survey on A Smart Health Monitoring System Based on

Context Awareness Sensing,” Communications_of_the_CCISA, vol. 25, no. 1, pp. 1-13,

2019.

[21] Jeng-Jung Wang, Yan-Haw Chen, Guan-Hsiung Liaw, Jack Chang, Cheng-Chih Lee,

"Efficient schemes with diverse of a pair of circulant matrices for AES MixColumns-

InvMixcolumns transformation," Communications_of_the_CCISA, vol. 26, no. 2, pp. 1-

20, 2020.

[22] J. J. Wang, Y. H. Chen, Y. W. Chen, and C. D. Lee, “Diversity AES in MixColomns step

with 8x8 circulant matrix,” International Journal of Engineering Technology and

Management Research, vol. 8 no. 9, pp. 19-35, 2021.

https://eprint.iacr.org/2019/833

