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Abstract 

   The traditional computer will be difference attacks by future quantum computer. Now, AES 

seems a resistant primitive in the post quantum world, with a bigger security margin against 

quantum computer attacks. In this paper, the key idea here is to propose a method with a 

variations 2k2k=nn involutory matrix for enhancing diffusion data in AES MixColumns-

InvMixColumns step that the Branch Number of the confusion capability is increased n+1 

where 1k   integer number, but the matrix multiplication is required a lot of the finite field 

multiplications. A 16×16 involutory matrix for matrix multiplication needs 256 multiplications 

and 240 additions for using encryption and decryption in AES MixColumns transformation. By 

utilizing both properties, the addition of the same elements over GF(2m) results in zero 

properties, and dividing the involutory matrix into four sets of submatrices circulant matrix 

properties; the matrix multiplication can be simplified by Scheme 3 (16×16 matrix) that matrix 

multiplications can use 81 multiplications and 260 additions with good branch number 17. 

Using Scheme 3 and the proposed method of the multiplication running on Intel CPU, to 

compare traditional matrix multiplication, the computational cost of matrix multiplication can 

be reduced by ~67%. Finally, using Scheme 1, Scheme 2, and Scheme 3 into AES Cipher and 

InvCipher procedure that the methods can increase encryption and decryption speed for data 

transmission. 
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1. Introduction 

 

The Advanced Encryption Standard (AES) algorithm [1] was chosen as the encryption 

standard in 1999, replacing the original Data Encryption Standard (DES) from among 15 

candidates. It has since been widely adopted globally due to its quickly computational and robust 

security features, establishing itself as the new standard in symmetric cryptography. In September 2000, 

Rijndael was officially designated as FIPS PUB 197 [2], with a complete round including four steps: 

SubBytes, ShiftRows, MixColumns, and AddRoundKey. Using larger matrices for AES 

computation is proposed in reference [3] which the matrix utilizes a 16×16 involutoy matrix for 

data diffusion. However, increasing data diffusion also reduces the speed of matrix multiplication 

operations. When performing matrix operations, this matrix allows for rapid calculation, 

providing comparable performance for both encryption and decryption. This method replaces 

the original 44 cyclic matrices in MixColumns steps of the AES. Reference [4] enhances 

encryption strength using 44 involutory matrix and 88 involutory matrices. There are 

research directions suggested by searching methods for finding MDS matrices in [5-6]. There 

are many block ciphers use Maximum Distance Separable (MDS) codes as diffusion layers [7-

9]. The well-known ciphers the Khazad [10] and ARIA [11] are using involutory matrix. The 

diversity circulant matrices are used in the modern cryptographic method in AES [12]. As 

descried in this paper, may be designed as a circuit in VLSI, see [13-16], which can be used to 

decrease logic gates. In [17] presents a quantum circuit to implement the S-box of AES. The matrix 

multiplication needs a finite filed multiplication for speeding operation [18-19]. The method 

also can provide the security of the data transfer to the health monitoring system on ARM-based 

microcontrollers [20]. We propose using involutory matrix for encoding and decoding for AES 

MixColumns steps that is not required the inverse polynomial A(x), denoted as A-1(x) [21-22]. 

The method using the 1616 involutory matrix would be more difficult for attackers to locate 

and thus less prone to attacks in general. The matrix product operation can be reduction like as 

circulant matrix method. The remaining portion of this paper is organized as follows: Section 

2 introduces enhanced security in AES MixColumns step. Section 3 discusses the multiplication 

in finite field concepts necessary for further developments, and also proposes methods to reduce 

the number of multiplications in different nn involutory matrix products for the AES 

encryption-decryption which these methods are called Scheme 1, Scheme 2, and Scheme 3, 

respectively. Section 4 presents a performance analysis of AES Cipher-InvCipher on Intel CPU. 

Section 5 concludes the paper. 
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2. Enhanced security in AES MixColumns transformation 

 
   This paper mainly is not focused on fix matrix element in AES MixColumns transformation. 

We aim to enhance security of AES algorithm with different matrix size for MixColumns steps 

that can be for increasing security. Since, the determining the key would require an exhaustive 

search and must to know what kind of matrix element in Table A as shown in Figure 1 for 

encrypting and decrypting. In other words, the key cannot be known from the plaintext and the 

ciphertext because there are not using AES standard MixColumns (02x, 03x, 01x, 01x) and 

InvMixColumns (0Ex, 0Bx, 0Dx, 09x) transformation. Furthermore, it might be sent different 

the involutory matrix elements by elliptic curve cryptography of the ECDH algorithm or RSA 

algorithm to receiver. In Table A, the value of elements from first row involutory MDS matrix 

(Hadamard matrix) is Hexadecimal. 

SubBytes MixColumnsAddRoundKey AddRoundKey

Key Expansion

InvSubBytes InvMixColumnsAddRoundKey AddRoundKey

Key Expansion

Table A

Table A

SubBytes

AddRoundKey

InvSubBytes

AddRoundKey

Plaintext

Plaintext

Ciphertext

Ciphertext

n×n Matrix elements 

4×4 Had(01x,02x,04x,06x)

8×8 Had(01x,03x,04x,05x,06x,08x,0bx,07x)

16×16
Had(01x,03x,04x,05x,06x,07x,08x,09x, 

0ax,0bx,0cx,0dx,0ex,10x,02x,1ex) 

n×n Matrix elements 

4×4 Had(01x,02x,04x,06x)

8×8 Had(01x,03x,04x,05x,06x,08x,0bx,07x)

16×16
Had(01x,03x,04x,05x,06x,07x,08x,09x, 

0ax,0bx,0cx,0dx,0ex,10x,02x,1ex) 

Key Expansion

 

Figure 1: The n×n involutory matrix elements for AES-like cipher-invcipher 

 

 

3. Fast matrix multiplication in AES MixColumns transformation 

 

The method for computing of involutory matrix is described herein that is based on the 2-

point cyclic convolution matrix. This section consists of three subsections, in the first 

subsection describes different method of the multiplication over finite field for matrix 

multiplication that can be also applied to matrix operation. Besides, uses two point cyclic matrix 
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the properties for reducing multiplication of the matrix product, Scheme 1, Scheme 2 and 

Scheme 3 are 4×4, 8×8, and 16×16 matrices for reducing multiplications, respectively. 

 

3.1 Multiplication over GF(2m) 

 

Let 
1

0
( )

m i

ii
a x a x




  and 

1

0
( )

m i

ii
b x b x




  be the polynomials over GF(2m), where ai, bi 

∈ {0, 1}. The finite field addition is defined as: 

 

( ) ( ) ( ),c x a x b x   (1) 

 

The symbol of “+” is XOR operation. The finite field multiplication is defined as: 

 

( ) ( ) ( ) mod  ( ),c x a x b x f x   (2) 

 

where the modulo f(x) is irreducible polynomial 
8 4 3( ) 1f x x x x x      in the AES 

algorithm. In (2), the a(x) polynomial can be form as follows: 

 

 2 3 2 2

7 6 5 4 3 2 1 0( ) ( ) ( ) ( )a x a x a x a x a x a x a x a x a         (3) 

 

The polynomial b(x) is represented as B. In (3) submitted (2) as following formula,  

 

 2 3 2 2

7 6 5 4 3 2

1 0

( ) ( ) mod ( ) ( ) mod ( )

          ( )

c x a Bx a Bx a B x f x a Bx a Bx a B x f x

a Bx a B

     

 
 

(4) 

 

Table 1: Lookup table LTB(𝑎𝑖 , 𝑎𝑗 , 𝑎𝑘) for multiplication over GF(28) 

LTB

[ , , ]i j ka a a  

2
( ) mod ( )

i j k
a Bx a Bx a B f x   Using logical operation by python 

LTB[0,0,0] 0 0 

LTB[0,0,1] B B 

LTB[0,1,0] LTB[0,0,1] x mod f(x) (LTB[0,0,1] <<1)&0XFF ^ FT[B>>7]&0X01 

LTB[1,0,0] LTB[0,1,0] x mod f(x) (LTB[0,1,0] <<1)&0XFF ^ FT[LTB[0,1,0]>>7]&0X01 

LTB[0,1,1] LTB[0,1,0] + LTB[0,0,1] LTB([,1,0] ^ LTB[0,0,1] 

LTB[1,0,1] LTB[1,0,0] + LTB[0,0,1] LTB[1,0,0] ^ LTB[0,0,1] 

LTB[1,1,0] LTB[1,0,0] + LTB[0,1,0] LTB[1,0,0] ^ LTB[0,1,0] 

LTB[1,1,1] LTB[1,1,0] + LTB[0,0,1] LTB[1,1,0] ^ LTB[0,0,1] 
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In Table 1, LTB(0,0,1)=B, LTB(0,0,1)x mod f(x) is expression mod ( )Bx f x  that can be 

represented as (𝐵<<1)&0𝑥FF^FT((𝐵 >> 7)&0𝑥01). (e.g., FT(0)=0, FT(1)=𝑥4 + 𝑥3 + 𝑥 +

1, binary 11011, Hex 0x1b). The modulo operation to make a table is as shown in Table 2. The 

method is rewritten in python programming as below: 

 

Table 2: Lookup table FT(𝑎𝑖 , 𝑎𝑗 , 𝑎𝑘) for modulo operation 

 FT[𝑎𝑖 , 𝑎𝑗 , 𝑎𝑘]  

FT[0,0,0]= FT[0]=0 FT[0,1,1]= FT[3]=0x2d FT[1,1,0]= FT[6]=0x5a 

FT[0,0,1]= FT[1]=0x1b FT[1,0,0]= FT[4]=0x6c FT[1,1,1]= FT[7]=0x41 

FT[0,1,0]= FT[2]=0x36 FT[1,0,1]= FT[5]=0x77  

 

The multiplication over GF(2m) by python program 

Def GFM(a,b): 

LTB=[0]*8 

LTB[0]=0; LTB[1]=b; LTB[2]=((b<<1)&0xFF)^FT[b>>7]; LTB[3]=LTB[2]^LTB[1] 

LTB[4]=(LTB[2]<<1)&0XFF^FT[LTB[2]>>7]; LTB[5]=LTB[4]^LTB[1]; 

LTB[6]=LTB[4]^LTB[2] 

LTB[7]=LTB[6]^LTB[1] 

C=LTB[(a>>5)] 

C=((C<<3)&0XFF)^FT[C>>5]^LTB[(a>>2)&0X7] 

C=((C<<2)&0XFF)^FT[C>>6]^LTB[a&0X3] 

return C 

 

3.2 Reducing the multiplications in 44 involutory matrix for matrix multiplication 

 

In AES MixColumns transformation that need four times matrix multiplication by 44 matrix. 

The product of the involutory matrix A and matrix B, is presented form as: 

 

0 0 1 2 3 0

1 1 0 3 2 1

2 2 3 0 1 2

3 3 2 1 0 3

 .

d a a a a b

d a a a a b

d a a a a b

d a a a a b

     
     
     
     
     
     

 (5) 
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Where 

0

1

2

3

D

d

d

d

d

 
 
 
 
 
  

 , 

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

a a a a

a a a a
A

a a a a

a a a a

 
 
 
 
 
 

, and

0

1

2

3

 = .

b

b
B

b

b

 
 
 
 
 
 

 

 

The matrix A can be represented as 0 1 2 3( , , , )Had a a a a . In (5), the matrix D is the product of 

the matrix A and the matrix B that is needed 16 multiplications and 12 additions (16M, 12A) 

listed as follows: 

 

(16M, 12A) 

0 0 0 1 1 2 2 3 3

1 1 0 0 1 3 2 2 3

2 2 0 3 1 0 2 1 3

3 3 0 2 1 1 2 0 3

d a b a b a b a b

d a b a b a b a b

d a b a b a b a b

d a b a b a b a b

   

   

   

   

 

 

Using the 22 cyclic matrix property for matrices multiplication is given by: 

 

   

   
0 0 1 0 0 1 0 1 10

1 0 0 0 1 0 1 011

y
    .

a a a b b a a bb

a a a b b a a bby

        
        

       
 (6) 

 

Therefore, in (6) only requires 3 multiplications and 4 additions, namely, (3M, 4A) as shown 

in Table 1. 

 

Table 3: The 22 cyclic matrix with (3M, 4A). 

 0 0 1 0( )t b b a    1 0 1t a a   

 0 0 1 1d t t b    1 0 1 0d t t b   

 

In Table 3, two entries 0  a  and 1a  are fix data, the item 1 0 1s a a   can be precomputed in 

the program. Thus, the 22 cyclic matrix method only uses 3 multiplications and 3 additions. 

The python program is as shown below. 

 

The 22 involutory matrix (3M, 4A) 

def FGH2(a0,a1,b0,b1): 

   t0=GFM((b0^b1),a0) 

   t1=a0^a1 

   d0=t0^GFM(t1,b1) 
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   d1=t0^GFM(t1,b0) 

   return [d0,d1] 

 

Theorem 1 Let A be any nn involutory matrix, where 2kn  , then the matrix A can be 

partitioned into four cyclic matrices, in which entries are ( )
2 2

n n
  submatrix where k  is 

greater than 1. 

Using (4), by Theorem 1, the 44 involutory matrix can be partitioned into four as, 

 

0 0 1 2 3 0

1 1 0 3 2 1

2 2 3 0 1 2

3 3 2 1 0 3

 .

d a a a a b

d a a a a b

d a a a a b

d a a a a b

     
     
     
     
     
     

 (7) 

 

where  
2 0 1 2 30

0 1 0 1

3 1 0 3 21

, , , ,
d a a a ad

D D A A
d a a a ad

      
         
       

20

0 1

31

, and .
bb

B B
bb

  
    
   

 

In (7), it can be used to reduce the multiplications in term of Equation (6) form as follows: 

 

   

   
0 0 1 0 1 10

0 0 1 0 1 01

2 2
,

2 2

A B B A A BD F G

A B B A A BD F H

       
            

 (8) 

 

where the symbol of   is represented the matrix addition, 

0 1 20

0 0 1

1 0 31

2 ( )
a a bb

F A B B
a a bb

   
      

   
, 

0 2 1 3 2

0 1 1

1 3 0 2 3

2 ( ) ,
a a a a b

G A A B
a a a a b

    
      

    
and

0 2 1 3 0

0 1 0

1 3 0 2 1

 2 ( ) .
a a a a b

H A A B
a a a a b

    
      

    
 So that, the matrices F2, G2, and H2 can call 

function FGH2() yields: 

 

0 1 0 2 1 3
2 2( , , , )F FGH a a b b b b    

0 2 1 3 2 3
2 2( + , , , )G FGH a a a a b b   

0 2 1 3 0 1
2 2( + , , , )H FGH a a a a b b   

(9) 

 

Obviously, the matrix F2 is calling function FGH2() with parameters that does not need 

combination of the sets with element bi. The matrix G2 and H2 are calling function FGH2() 
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with parameters that are combination of the sets with element ai. In (9), rewrite the terms in 

0 0 2 1 1 3and t a a t a a     as follows: 

 

0 1 1 3 0 2
2 2( , , , )F FGH a a b b b b    

0 1 2 3
2 2( , , , )G FGH t t b b

 

0 1 0 1
2 2( , , , )H FGH t t b b

 

(10) 

 

Next, the 44 involutory matrix for matrix multiplication is given as 

 

0

1

2 2

2 2

D F G

D F H

   
   

  
, 

 

where the symbol of   is represented the matrix addition. In the simplified case, the matrix 

multiplication can be performed by 9 multiplications and 20 additions (9M, 20A). Two items 

0 0 2 1 3 1 and  t a a t a a     are known because the value ia  of the elements of the matrix A, 

can be precomputed in the program. So that the method only uses 9 multiplications and 18 

additions, that is remarked as (9M, 18A). The 44 involutory matrix for the matrix 

multiplication is written by python program that is called Scheme 1. So that, Scheme 1 is need 

4 times in AES MixColumns transformation that there are 36 multiplications and 72 additions 

(36M, 72A). 

 

Scheme 1: 44 involutory matrix (9M, 20A) 

def FGH4(a0,a1,a2,a3,b0,b1,b2,b3): 

   t0=a0^a2; t1=a1^a3 

   F2=FGH2(a0,a1,b0^b2,b1^b3) 

   G2=FGH2(t0,t1,b2,b3) 

   H2=FGH2(t0,t1,b0,b1) 

   d0=F2[0]^G2[0] 

   d1=F2[1]^G2[1] 

   d2=F2[0]^H2[0] 

   d3=F2[1]^H2[1] 

   return [d0,d1,d2,d3] 
 

3.3 Reducing the multiplications in 88 involutory matrix for matrix multiplication 
 

Matrix multiplication is needed M=64, A=56, where, M is multiplications, A is additions. 

The matrix is 8×8 involutory matrix in AES MixColumns transformation that is required twice 

times matrix multiplication: 
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0 0 1 2 3 4 5 6 7 0

1 1 0 3 2 5 4 7 6

2 2 3 0 1 6 7 4 5

3 3 2 1 0 7 6 5 4

4 4 5 6 7 0 1 2 3

5 5 4 7 6 1 0 3 2

6 6 7 4 5 2 3 0 1

7 7 6 5 4 3 4 1 0

d a a a a a a a a b

d a a a a a a a a b

d a a a a a a a a

d a a a a a a a a

d a a a a a a a a

d a a a a a a a a

d a a a a a a a a

d a a a a a a a a

   
   
   
   
   
   
   
   
   
   
   
      

1

2

3

4

5

6

7

b

b

b

b

b

b

 
 
 
 
 
 
 
 
 
 
 
  

, (11) 

 

where 

0 4

1 5

0 1

2 6

3 7

,  

b b

b b
B B

b b

b b

   
   
    
   
   
   

, 

0 1 2 3

1 0 3 2

0

2 3 0 1

3 2 1 0

a a a a

a a a a
A

a a a a

a a a a

 
 
 
 
 
 

, 

4 5 6 7

5 4 7 6

1

6 7 4 5

7 6 5 4

a a a a

a a a a
A

a a a a

a a a a

 
 
 
 
 
 

. 

 

By (11), it can be used to reduce the multiplications in term of Equation (6) form as follows: 

 

0 0 1 0 1 10

0 0 1 0 1 01

( ) ( ) 4 4
,

( ) ( ) 4 4

A B B A A BD F G

A B B A A B F HD

       
    

       
. 

 

where the symbol of   is represented the matrix addition, 0 0 14 ( )F A B B  , 

0 1 14 ( )G A A B  , and 0 1 04 ( )H A A B  . 

 

0 1 2 3 0 4

1 0 3 2 1 5

2 3 0 1 2 6

3 2 1 0 3 7

4

a a a a b b

a a a a b b
F

a a a a b b

a a a a b b

   
   


   
   
   

   

 (12) 

 

In (12), the matrix F4 calling function FGH4() is as below. 

 

4 0 1 2 3 0 4 1 5 2 6 3 74 ( , , , , , , , )F FGH a a a a b b b b b b b b     , 

0 4 1 5 2 6 3 7 4

1 5 0 4 3 7 2 6 5

2 6 3 7 0 4 1 5 6

3 7 2 6 1 5 0 4 7

4 .

a a a a a a a a b

a a a a a a a a b
G

a a a a a a a a b

a a a a a a a a b

      
   

   
   
      
   

      

 (13) 

 

A0 

A0 

A1 

A1 

B0 

B1 

D0 

D1 
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The matrix G4 calling function FGH4() is rewritten as below: 

 

4 0 4 1 5 2 6 3 7 4 5 6 74 ( , , , , , , , )G FGH a a a a a a a a b b b b      

 

0 4 1 5 2 6 3 7 0

1 5 0 4 3 7 2 6 1

2 6 3 7 0 4 1 5 2

3 7 2 6 1 5 0 4 3

4 .

a a a a a a a a b

a a a a a a a a b
H

a a a a a a a a b

a a a a a a a a b

      
   

   
   
      
   

      

 (14) 

 

In (14), matrix H4 calling function FGH4() is rewritten as below. 

 

4 0 4 1 5 2 6 3 7 0 1 2 34 ( , , , , , , , )H FGH a a a a a a a a b b b b     . 

 

It needs 27 multiplications and 76 additions, namely, (27M, 76A), the two items can be replaced 

as 0 0 4 ,t a a   1 1 5 ,t a a   2 2 6t a a   and 3 3 7t a a   that precomputing for matrix 

multiplication is only 72 additions, namely, (27M, 72A). Consequently, the matrix 

multiplication is simplified in MixColumns step in AES that needs two times 8x8 matrix 

multiplication, the operation is needs 54 multiplications and 148 additions, namely, (54M, 

144A). The 88 involutory matrix for matrix multiplication is called Scheme 2 that can further 

be rewritten by python program as follows: 

 

Scheme 2: 88 involutory matrix (27M, 76A) 

def FGH8(a0,a1,a2,a3,a4,a5,a6,a7,b0,b1,b2,b3,b4,b5,b6,b7): 

   t0=a0^a4;t1=a1^a5;t2=a2^a6;t3=a3^a7  

   F=FGH4(a0,a1,a2,a3,b0^b4,b1^b5,b2^b6,b3^b7) 

   G=FGH4(t0,t1,t2,t3,b4,b5,b6,b7) 

   H=FGH4(t0,t1,t2,t3,b0,b1,b2,b3) 

   D=[0]*8 

   for i in range (0,len(F)): 

       D[i]=F[i]^G[i] 

   for i in range (0,len(F)): 

       D[i+4]=F[i]^H[i] 

   return D 
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3.4 Reducing the multiplications in 1616 involutory matrix for matrix multiplication 
 

Using the 1616 matrix is only a matrix multiplication in AES MixColumns, which is 256 

multiplications and 240 additions. A 16×16 involutory matrix for matrix multiplication is as 

shown below. 

 

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14

2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12

3

4

5

6

7

8

9

10

11

12

13

14

15

d a a a a a a a a a a a a a a a a

d a a a a a a a a a a a a a a a a

d a a a a a a a a a a a a a a a

d

d

d

d

d

d

d

d

d

d

d

d

d

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

13

3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12

4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11

5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10

6 7 4 5 2 1 0 1 14 15 12 13 10 11 8 9

7 6 5 4 1 2 1 0 15 14 13 12 11 10 9 8

8 9 10

a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a 11 12 13 14 15 0 1 2 3 4 5 6 7

9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6

10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5

11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4

12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3

13 12 15 14 9 8

a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a

0

1

2

3

4

5

6

7

8

9

10

11

12

11 10 5 4 7 6 1 0 3 2 13

14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1 14

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15

b

b

b

b

b

b

b

b

b

b

b

b

b

a a a a a a a a a b

a a a a a a a a a a a a a a a a b

a a a a a a a a a a a a a a a a b

  
  
  
  
  
  
  
  
  
  
  
  
  
  
 
 
 
 
 
 
 
 
 
 
  
















 
 
 
 
 
 
 
 
 
 


 

 

The matrix can be used to reduce the multiplications in term of Equation (6) form as follows: 

 

0 0 1 0 1 10

0 0 1 0 1 01

( ) ( ) 8 8
,

( ) ( ) 8 8

A B B A A BD F G

A B B A A B F HD

       
    

       
 

 

where the symbol of   is the matrix addition, the matrices 0 0 18 ( )F A B B  , 

0 1 18 ( )G A A B  , and 0 1 08 ( )H A A B   can be representation form as below: 

 

A0 A1 

A1 A0 

B0 

B1 

D0 

D1 
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0 1 2 3 4 5 6 7 0 8

1 0 3 2 5 4 7 6 1 9

2 3 0 1 6 7 4 5 2 10

3 2 1 0 7 6 5 4 3 11

4 5 6 7 0 1 2 3 4 12

5 4 7 6 1 0 3 2 5 13

6 7 4 5 2 3 0 1 6 14

7 6 5 4 3 4 1 0 7

8

a a a a a a a a b b

a a a a a a a a b b

a a a a a a a a b b

a a a a a a a a b b
F

a a a a a a a a b b

a a a a a a a a b b

a a a a a a a a b b

a a a a a a a a b

 
 


 
  
 

 
  
 

 
  
 

   15

.

b

 
 
 
 
 
 
 
 
 
 
 
  

 

 

The matrix F8 calling function FGH8() is written as below. 

 

8 0 1 2 3 4 5 6 7 0 8 1 9 2 10 3 11 4 12 5 13 6 14

7 15

8 ( , , , , , , , , , , , , , , ,

         )

F FGH a a a a a a a a b b b b b b b b b b b b b b

b b

       


 

 

0 8 1 9 2 10 3 11 4 12 5 13 6 14 7 15

1 9 0 8 3 11 2 10 5 13 4 12 7 15 6 14

2 10 3 11 0 8 1 9 6 14 7 15 4 12 5 13

3 11 2 10 1 9 0 8 7 15 6 14 5 13 4 12

4 12 5 13

8

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a
G

a a a a a

       

       

       

       


 

8

6 14 7 15 0 8 1 15 2 10 3 11

5 13 4 12 7 15 6 14 1 9 0 8 3 11 2 10

6 14 7 15 4 12 5 13 2 10 3 9 0 8 1 9

7 15 6 14 5 13 4 12 3 11 4 10 1 9 0 8

b

b

a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

 
 
 
 
 
 
      
 

        
        
 

         

9

10

11

12

13

14

15

.

b

b

b

b

b

b

 
 
 
 
 
 
 
 
 
 
 
  

 

 

The matrix G8 calling the function FGH8() is as follows: 

 

8 0 8 1 9 2 10 3 11 4 12 5 13 6 14 7 15 8 9 10 11 12

13 14 15

8 ( , , , , , , , , , , , , ,

         , , )

G FGH a a a a a a a a a a a a a a a a b b b b b

b b b

        
 

 

0 8 1 9 2 10 3 11 4 12 5 13 6 14 7 15

1 9 0 8 3 11 2 10 5 13 4 12 7 15 6 14

2 10 3 11 0 8 1 9 6 14 7 15 4 12 5 13

3 11 2 10 1 9 0 8 7 15 6 14 5 13 4 12

4 12 5 13

8

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a
H

a a a a a

       

       

       

       


 

0

6 14 7 15 0 8 1 15 2 10 3 11

5 13 4 12 7 15 6 14 1 9 0 8 3 11 2 10

6 14 7 15 4 12 5 13 2 10 3 9 0 8 1 9

7 15 6 14 5 13 4 12 3 11 4 10 1 9 0 8

b

b

a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a a

 
 
 
 
 
 
      
 

        
        
 

         

1

2

3

4

5

6

7

.

b

b

b

b

b

b

 
 
 
 
 
 
 
 
 
 
 
  

I 
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The matrix H8 calling function FGH8() is written as below. 

 

8 0 8 1 9 2 10 3 11 4 12 5 13 6 14 7 15 0 1 2 3 4 58 ( , , , , , , , , , , , , ,H FGH a a a a a a a a a a a a a a a a b b b b b b          

6 7, , )b b  

 

Matrix multiplication, using 4×4 matrix needs 16 multiplications and 12 additions; using 8×8 

matrix needs 64 multiplications and 56 additions; using 16×16 matrix needs 256 multiplications 

and 240 additions. Using Scheme 1 needs 36 multiplications and 80 additions; using Scheme 2 

needs 27 multiplications and 76 additions; Scheme 3 only uses 81 multiplications and 260 

additions. In summary, the number of the multiplications and memory sizes for different 

Schemes are as shown in Table 4. In Table 4, the symbol “M” represents the multiplications 

and the symbol “A” represents the additions. 

 

Scheme 3: 1616 involutory matrix (81M, 260A) 

def FGH16(a0,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,b0,b1,b2,b3,b4,b5,b6,b7, 

b8,b9,b10,b11,b12,b13,b14,b15): 

    t0=a0^a8;t1=a1^a9;t2=a2^a10;t3=a3^a11;t4=a4^a12;t5=a5^a13;t6=a6^a14;t7=a7^a15 

F=FGH8(a0,a1,a2,a3,a4,a5,a6,a7, 

   b0^b8,b1^b9,b2^b10,b3^b11,b4^b12,b5^b13,b6^b14,b7^b15) 

    G=FGH8(t0,t1,t2,t3,t4,t5,t6,t7,b8,b9,b10,b11,b12,b13,b14,b15) 

    H=FGH8(t0,t1,t2,t3,t4,t5,t6,t7,b0,b1,b2,b3,b4,b5,b6,b7) 

    D=[0]*16 

    for i in range (0,len(F)): 

        D[i]=F[i]^G[i] 

    for i in range (0,len(F)): 

        D[i+8]=F[i]^H[i] 

    return D 

 

Note that the traditional circulant matrix multiplication in AES, which has to find inverse matrix 

for decryption processes. However, Scheme 1, Scheme 2 and Scheme 3 can be used both 

encryption and decryption in AES MixColumns and InvMixColumns transformation. 

 

Table 4: Different schemes need operations and memory sizes. 

Matrix 

multiplication 
(M, A) 

Memory 

sizes 
Schemes (M, A)  

Memory 

sizes 

4x4 matrix (64M, 48A) 4 bytes Scheme 1 (36M, 80A) 12 bytes 
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8x8 matrix (128M, 84A) 8 bytes Scheme 2 (54M, 152A) 48 bytes 

16x16 matrix (256M, 240A) 16 bytes Scheme 3 (81M, 260A) 168 bytes 

 

 

4. Simulation results 

 

   The different methods of the multiplication execute time running 100,000 times in Intel 

Core i9-12900 @ 2.4GHz by python program and the results are given in Table 5. 

 

Table 5: Different schemes of multiplication executes time. 

Multiplication Execution time Memory size 

Russian Peasant algorithm 0.17 s 0 bytes 

Horner's rule [21] 0.10 s 8 bytes 

The proposed method 0.09 s 16 bytes 

 

The proposed method is faster than Horner’s rule. As a result, the finite field multiplication is 

utilized for performing matrix multiplication in the 4×4 involutory matrix, designated as A4×4; 

the 8×8 involutory matrix, designated as A8×8, and the 16×16 involutory matrix, designated as 

A16×16, as detailed below: 
 

4 4

01 02 04 06

02 01 06 04

04 06 01 02

06 04 02 01

A



 
 
 
 
 
 

, 
8 8

01 03 04 05 06 08 0 07

03 01 05 04 08 06 07 0

04 05 01 03 0 07 06 08

05 04 03 01 07 0 08 06

06 08 0 07 01 03 04 05

08 06 07 0 03 01 05 04

0 07 06 08 04 05 01 03

07 0 08 06 05 04 03 01

B

B

B

B

B

B

B

B

A 

 
 
 
 
 
 
 
 
 
 
 
 

, and 
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16 16

01 03 04 05 06 07 08 09 0 0 0 0 0 10 02 1

03 01 05 04 07 06 09 08 0 0 0 0 10 0 1 02

04 05 01 03 08 09 06 07 0 0 0 0 02 1 0 10

05 04 03 01 09 08 07 06 0 0 0 0 1 02 10 0

06 07 08 09 01 03 04 05 0 10 02 1 0 0 0 0

07 06 09 08 03 01 05 04 10 0 1 02 0 0 0 0

0

A B C D E E

B A D C E E

C D A B E E

D C B A E E

E E A B C D

E E B A D C

A  

8 09 06 07 04 05 01 03 02 1 0 10 0 0 0 0

09 08 07 06 05 04 03 01 1 02 10 0 0 0 0 0

0 0 0 0 0 10 02 1 01 03 04 05 06 07 08 09

0 0 0 0 10 0 1 02 03 01 05 04 07 06 09 08

0 0 0 0 02 1 0 10 04 05 01 03 08 07 06 07

0 0 0 0 1 02 10 0 05 04 03 01 09 08 07 06

0 10 02 1 0

E E C D A B

E E D C B A

A B C D E E

B A D C E E

C D A B E E

D C B A E E

E E 0 0 0 06 07 08 09 01 03 04 05

10 0 1 02 0 0 0 0 07 06 09 08 03 01 05 04

02 1 0 10 0 0 0 0 08 09 06 07 04 05 01 03

1 02 10 0 0 0 0 0 09 08 07 06 05 04 03 01

.

A B C D

E E B A D C

E E C D A B

E E D C B A

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Note that the value of the elements in the involutory matrix is Hexadecimal. 

 

Using the traditional matrix multiplication and Schemes are for evaluating procedure running 

10,000 times. There are many methods for computing matrix multiplication, in which using the 

proposed multiplication for Schemes is very fast when compared other traditional methods of 

the matrix multiplication as shown in Table 6. 

 

Table 6:  The computing time of the matrix multiplication. 

Multiplication 

algorithms 

(4×4) 

matrix 

(8×8) 

matrix 

(16×16) 

matrix 

SCM 1 

(9M,20A) 

SCM 2 

(27M,80A) 

SCM 3 

(54M,160A) 

Reducing 

Percentage 

(16×16)- SCM 3 

/(16×16)100% 

Russian 

Peasant 
0.29s 1.14s 4.60s 0.16s 0.48s 1.48s 68% 

Horner's rule 0.19s 0.73s 2.88s 0.10s 0.31s 0.95s 67% 

The proposed 

method 
0.16s 0.64s 2.55s 0.09s 0.27s 0.83s 67% 

 

These matrices of diffusion data are used in the AES MixColumns transformation calculation 

as shown in Figure 2. Scheme 1 needs ShiftRows function, because the diffusion matrix of the 

size is smaller. Scheme 2 and Scheme 3 in matrix size have larger diffusion so that does not 

need ShiftRows functions. 
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ShiftRows

MixColumns

AddRoundKey

SubBytes

4×4 Matrix

Matrix

multiplication

Plaintext

Ciphertext

4×4 Matrix

Matrix

multiplication

4×4 Matrix

Matrix

multiplication

4×4 Matrix

Matrix

multiplication

Plaintext

Scheme 1

Key 
Expansion

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

MixColumns

AddRoundKey

SubBytes

8×8 Matrix

Matrix

multiplication

8×8 Matrix

Matrix

multiplication

Scheme 2

Key 
Expansion

AddRoundKey

SubBytes

AddRoundKey

Ciphertext

Plaintext

MixColumns

AddRoundKey

SubBytes

16×16 Matrix

Matrix

multiplication

Scheme 3

Key 
Expansion

AddRoundKey

SubBytes

AddRoundKey

Ciphertext  

Figure 2: the matric of the different sizes using in the AES 

  

Using the traditional methods and Schemes by python language are for evaluating encryption 

procedure with different AES key lengths. The keys sizes are 128, 192, and 256 bits for running 

cipher 10,000 execution time as shown in Table 7, which it can be into graphical from in Figure 

3. The trade-off between matrix size and speed performance in AES Cipher would suggest that 

Scheme 2 (88 matrix) is better suitable for embedded systems that is faster than traditional 

matrix multiplication (44 matrix) running in AES MixColumns transformation; The keys of 

the lengths 128, 192, 256 bits can be reduced execution time ~12%, ~12%, and ~12%, 

respectively. 

 

Table 7:  The keys lengths of 128, 192, and 256 bits execution time with different matrix size. 

Matrix size AES 128 AES 192 AES 256 

4x4 matrix 6.27 7.62 9.04 

Scheme1 3.57 4.30 5.13 

8x8 matrix 11.80 14.46 17.15 

Scheme 2 5.34 6.56 7.75 

16x16 matrix 23.01 28.04 33.21 

Scheme 3 7.95 9.78 11.67 
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Figure 3: AES execution time with the different key lengths 

 

 

5. Conclusion 

 

  To summarize, this study showed herein that the computational complexity matrix 

multiplication over GF(28) can be minimized by dividing the matrix into four submatrices and 

2-point cyclic convolution property. In comparison for each of the matrix sizes, in AES a key 

size of 128 bits, 192 bits, and 256 bits, Scheme 2 can be run on MixColumns step of the AES 

faster than (16M, 12A) method. Scheme 1, Scheme 2, and Scheme 3 can also be used for 

different key sizes that you need cryptographic strength. Scheme 1 and Scheme 2 matrix 

multiplication are fast than Scheme 3 for encryption and decryption. However, Scheme 3 

exhibits a superior branch number for enhancing data security. When using Scheme 2 and 

Scheme 3, in AES algorithm can remove ShiftRows step that is illustrated in Figure 1. In the 

future, Scheme 1, Scheme 2, and Scheme 3 could also be utilized in VLSI circuit design to 

reduce the number of logic gates required for the MixColumns and InvMixColumns 

transformations. 
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