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Abstract

With the widespread adoption of Internet of Things (IoT) devices and the public release of
the Mirai botnet source code, [oT environments are facing increasingly severe security threats.
To address these challenges, this study proposes a deep learning—based multi-class IoT attack
detection method incorporating an attention mechanism. Experiments were conducted using the
CIC-10T-2023 dataset, which includes 33 types of attack traffic. Considering the temporal
characteristics of IoT attacks, this study implements and customizes three temporal deep
learning models—Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and
Temporal Convolutional Network (TCN). Each model is integrated with a unified attention
mechanism to enhance the recognition of critical temporal features. Meanwhile, to mitigate the
serious data imbalance commonly found in [oT attack datasets, a multi-level balancing strategy
was developed. This strategy combines random undersampling to equalize class distributions,
Class-Weighted Focal Loss, and Weighted Random Sampling to ensure balanced batches during
training. Experimental results show that the TCN achieved the best overall performance, with
all major metrics exceeding 99.5%, while the GRU achieved the highest computational
efficiency. Compared with existing studies, the proposed method demonstrates superior
performance in application-layer attack detection, maintaining high detection rates for web and
reconnaissance attacks, and effectively overcoming current limitations in Layer 7 attack
recognition. The contributions of this work are as follows: (1) a systematic performance
comparison of LSTM, GRU, and TCN models for multi-class [oT attack detection; and (2) the
integration of attention mechanisms with multi-level data balancing strategies, which

significantly improve the detection of application-layer and minority-class threats.

Keywords: 10T security, intrusion detection system, deep learning, attention mechanism,
imbalanced data, CIC-10T-2023
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