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Abstract 

Cyber Threat Intelligence (CTI) analysis faces significant challenges due to the scale and 

complexity of threat data. Large Language Models (LLMs) and Retrieval-Augmented 

Generation (RAG) offer promising solutions; however, existing approaches often struggle with 

limited accuracy and hallucination. We propose an enhanced RAG framework that incorporates 

fine-tuned BERT embeddings for semantic retrieval and technique annotation, coupled with 

structured prompt generation to guide LLMs toward more precise and context-aware threat 

analysis. Compared with traditional encoder-only architectures, our framework substantially 

improves both accuracy and efficiency. Experiments conducted on the MITRE ATT&CK 

database and recent open-source threat reports demonstrate that our model achieves an F1-score 

of 0.93, outperforming state-of-the-art baselines including GPT-4 and LLaMA-3. These results 

highlight the potential of advanced RAG architectures to enable scalable, accurate, and 

trustworthy automated CTI analysis. 
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1. Introduction  

 

With the rapid advancement of internet technologies, enterprises and organizations are 

increasingly exposed to escalating cyber threats. To mitigate these risks, cybersecurity analysts 

rely on Cyber Threat Intelligence (CTI) to anticipate potential attacks and develop defense 

strategies, thereby improving the defensive posture of organizations [1, 2]. To systematically 

identify and classify such threats, frameworks such as MITRE ATT&CK [3] are widely adopted. 

MITRE ATT&CK, developed by the MITRE Corporation, is a globally recognized knowledge 

base that categorizes cyber adversary behavior using the Tactics, Techniques, and Procedures 

(TTPs) taxonomy. Tactics describe the overarching objectives or strategic goals of an adversary; 

techniques specify the methods employed to achieve these objectives; procedures provide 

detailed, step-by-step implementations of techniques in real-world scenarios. 

TTPs offer a comprehensive representation of adversarial attack patterns, enabling analysts 

to accurately pinpoint ongoing malicious activities and develop timely countermeasures. The 

rapid growth of the Internet and social media platforms has dramatically increased the volume 

of CTI [4]. However, discrepancies in CTI formats and quality across sources remain a 

significant challenge [5]. For instance, unstructured CTI sources such as AlienVault [6] and 

Twitter [7] often contain up-to-date findings from security analysts, but the content and scope 

depend heavily on the discoverer’s focus. These inconsistencies increase the difficulty of 

analysis, potentially lengthening response times and reducing detection accuracy. Traditional 

manual classification of TTPs is a time-consuming task, requiring significant human expertise 

and time. As the volume and complexity of CTI reports grow, this manual effort risks 

overlooking critical attacker intent in real time, potentially leading to delayed or ineffective 

defensive actions [8]. To address these issues, automated AI-based classification models for 

techniques within TTPs can substantially reduce analyst workload, improve classification 

accuracy, and enhance the timeliness of threat detection. Such automation enables faster and 

more informed incident responses, thereby strengthening overall cybersecurity resilience. 

The emergence of Large Language Models (LLMs) has opened new opportunities for CTI 

analysis. Models such as GPT-3.5 [9], built upon the Transformer architecture [10], have shown 

remarkable advances in semantic understanding and text generation. The Transformer’s 

attention mechanism allows parallel processing across sequences, significantly improving 

efficiency. Encoder-based models (e.g., Bidirectional Encoder Representations from 

Transformers, BERT [11]) capture contextual semantics for text understanding, while decoder-

based models (e.g., ChatGPT [12]) excel in natural language generation. BERT is trained 

through unsupervised pre-training tasks on large-scale general-domain corpora such as 

BooksCorpus [13] and Wikipedia [14], capturing fundamental semantic and syntactic structures 
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of natural language. However, to achieve optimal performance in domain-specific applications, 

fine-tuning is essential. This process adapts the model’s general linguistic knowledge to 

specialized domains such as cybersecurity, medical text analysis, and sentiment detection. 

Despite their strengths, decoder-based models have been underutilized in CTI classification due 

to the risk of hallucination, the tendency to generate plausible but incorrect outputs with high 

confidence [15].  

To address this limitation, Lewis et al. [16] introduced Retrieval-Augmented Generation 

(RAG), a hybrid approach that integrates external knowledge retrieval with generative models. 

By incorporating domain-specific evidence during generation, RAG mitigates hallucinations 

and produces more accurate, factually grounded outputs. Building on this paradigm, the present 

study proposes an enhanced RAG framework tailored for CTI classification, particularly 

focusing on TTPs. The key contributions of our approach are threefold: (1) fine-tuned BERT 

embeddings are employed to enrich contextual representations of cybersecurity-specific terms, 

thereby improving retrieval precision and classification accuracy; (2) LangChain [17] -based 

structured prompting is incorporated to guide response generation, ensuring that the model 

explicitly acknowledges uncertainty rather than producing misleading classifications; and (3) 

empirical validation using a dataset derived from the MITRE ATT&CK framework [18] 

demonstrates that the proposed method achieves an F1-score of 93%, outperforming 

conventional deep learning-based CTI classification methods.  

The remainder of this paper is organized as follows. Section 2 reviews related work in CTI 

classification and compares existing methods with the proposed approach. Section 3 discusses 

the challenges of applying LLMs to CTI and explains how RAG addresses hallucination issues. 

Section 4 details the proposed method of the enhanced RAG framework, including architectural 

design, embedding strategies, and its application to CTI. Section 5 outlines the experimental 

setup, dataset preprocessing, and presents the results with performance analysis. Finally, 

Section 6 concludes with a summary of contributions. 

 

2. Related Work 

 

This section reviews the evolution of automated techniques for extracting and classifying 

TTPs in CTI. The discussion begins with traditional rule-based approaches, progresses through 

early machine learning methods, and concludes with the most recent advances in LLMs. Each 

category is examined in terms of its suitability for TTP extraction tasks, with particular attention 

to its strengths, limitations, and the challenges that motivate this study. 

 

2.1 Traditional Rule-Based and Early Machine Learning Methods 
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 Early research on TTP extraction and classification can generally be divided into rule-

based and machine learning approaches. Rule-based methods rely on expert-crafted heuristics, 

such as regular expressions and domain-specific keyword lists, to identify TTPs from 

unstructured reports. For instance, Husari et al. [19] developed TTPDrill, which employed 

syntactic patterns and ontology mapping to align extracted behaviors with the MITRE 

ATT&CK framework. While these approaches achieve high precision and strong 

interpretability, they are costly to maintain and struggle to accommodate linguistic diversity 

and novel threats. To improve scalability, researchers later turned to supervised machine 

learning, leveraging features such as n-grams, contextual cues, and positional information to 

train classifiers. For example, Sharma et al. [20] introduced RADAR, an extensible TTP-based 

system that applies machine learning to network traffic analysis and malware detection, 

demonstrating the practical utility of TTP-aware models in real-world security tasks. These 

models can automatically learn patterns from data and adapt more flexibly to evolving threats; 

however, they tend to be less interpretable and remain highly dependent on data quality. The 

limitations of both rule-based and traditional machine learning approaches ultimately motivated 

the transition toward deep learning and semantic modeling as more robust solutions for TTP 

classification. 

 

2.2 Applications of Deep Learning for TTPs Classification Tasks 

 

To overcome the limitations of rule-based methods, recent studies have increasingly 

adopted deep learning approaches, particularly Transformer-based models [10]. BERT [11], 

with its strong capability for contextual semantic modeling, has been widely applied to extract 

TTPs from CTI reports. For instance, You et al. [21] proposed the TIM framework, which 

formulates TTP classification as a sentence-level task and integrates TCENet to capture 

contextual semantics, thereby enhancing classification performance. Nonetheless, the 

effectiveness of such models remains constrained by data quality and the comprehensiveness 

of semantic representations. To address class imbalance, Kim et al. [22] employed Easy Data 

Augmentation (EDA), which generates synthetic samples through operations such as synonym 

replacement, random insertion, word swapping, and deletion. While EDA increases diversity in 

low-resource categories, its surface-level transformations often introduce noise and fail to 

capture deeper semantic structures, thereby limiting its impact on classification accuracy. To 

improve domain relevance, researchers have developed specialized models such as 

SecureBERT [23], trained on cybersecurity corpora, and SecBERT [24], fine-tuned on datasets 

including APTnotes [25], Stucco-Data [26], CASIE [27], and SemEval [28]. These domain-
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adapted models demonstrate superior performance compared to general-purpose language 

models. 

With the advent of LLMs such as GPT-4 [29] and LLaMA-3 [30], deep learning has 

achieved significant advances in natural language understanding and generation. LLMs are 

capable of performing complex reasoning and knowledge transfer with minimal reliance on 

labeled data. In the context of TTP classification, LLMs can emulate the role of a security 

analyst by extracting and categorizing relevant TTPs from documents without the need for 

manual rule engineering or extensive annotation. The long-context decoder architecture of 

LLaMA-3 is particularly well-suited for cross-paragraph reasoning and semantic integration in 

CTI reports. Nevertheless, LLMs remain susceptible to hallucination [31], producing outputs 

that appear plausible but are factually inaccurate in the absence of explicit knowledge support. 

They also suffer from delayed knowledge updates, as their knowledge is fixed at the time of 

training. Moreover, domain-agnostic models may misinterpret cybersecurity-specific 

terminology and syntax, thereby reducing classification accuracy. 

In addition to leveraging BERT for feature extraction, another line of research focuses on 

directly fine-tuning LLMs to internalize cybersecurity domain knowledge. For example, 

Fengrui et al. [32] proposed a TTP classification framework that combines few-shot learning 

with instruction-tuning strategies. Their method employed ChatGPT to generate diverse TTP 

descriptions for augmenting rare classes and subsequently fine-tuned Llama-2-7B for task-

specific classification of MITRE ATT&CK techniques. While this approach relies solely on 

LLM-based classification without an external retrieval module, it provides valuable insights 

into TTP automation through data augmentation and fine-tuning. Nonetheless, such methods 

face notable challenges: (1) high computational costs, as fine-tuning multi-billion-parameter 

models requires substantial GPU resources, and (2) delayed knowledge updates, since 

retraining is necessary to incorporate new threat intelligence.  
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Table 1: TTPs Classification Research Method Capability Comparison Table. 

Study 

Domain-

Specific 

Semantic 

Adaptability 

Retrieval 

Capability 

Long-

Context 

Reasoning 

Ability 

Unstructured 

Data 

Processing 

Ability 
 

Classification 

Task 

Interpretability 

Husari et al. [19] ✓ ✗ ✗ ✓ ✗ 

Sharma et al. [20] ✓ ✗ ✗ ✓ ✗ 

You et al. [21] ✓ ✗ ✗ ✓ ✗ 

Kim et al. [22] ✓ ✗ ✗ ✗ ✗ 

Aghaci et al. [23] ✓ ✗ ✗ ✓ ✗ 

Kun et al. [24] ✓ ✗ ✗ ✓ ✗ 

Fengrui et al. [32] ✓ ✗ ✓ ✓ ✓ 

Ours ✓ ✓ ✓ ✓ ✓ 

 

In contrast, the enhanced RAG framework proposed in this study fine-tunes only a 

lightweight BERT to improve retrieval accuracy, significantly reducing computational costs. 

The RAG architecture further enables immediate knowledge updates by incorporating new CTI 

documents into the vector database and offers traceable evidence for classification decisions, 

thereby mitigating hallucination risk. Table 1 compares common TTP classification methods 

with the proposed approach across dimensions such as semantic adaptability, retrieval capability, 

long-context reasoning, ability to process unstructured data, and interpretability, underscoring 

the comprehensive advantages of our framework. 

 

3. Problem Statement 

 

Recent advances in NLP have facilitated the adoption of RAG and LLMs in CTI 

classification tasks. Despite these developments, several challenges remain. General-purpose 

embeddings often fail to capture the domain-specific semantics of cybersecurity, thereby 

limiting classification accuracy. RAG architectures further demand embeddings that are both 

semantically precise and contextually aligned with threat intelligence data. In addition, 

generative models frequently struggle to produce reliable and interpretable outputs without 

carefully structured prompt guidance. To address these limitations, this study decomposes the 
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research problem into three sub-problems, each targeting a critical component of the overall 

solution. 

 

Sub-problem 1: Development of an Embedding Model 

The first challenge is to obtain embeddings that effectively capture the fine-grained 

semantics of TTPs. General-purpose embeddings often overlook cybersecurity-specific 

concepts, reducing retrieval and classification accuracy. 

 

⚫ Input: CTI documents 

⚫ Output: BERT Embedding 

⚫ Objective: Extract high-quality embeddings for TTP classification, maximizing 

retrieval accuracy and efficiency 

 

Sub-problem 2: Construction of the Retrieval-Augmented Generation Model 

The second challenge focuses on integrating a RAG framework to enhance contextual 

relevance and inference capabilities for contemporary threat scenarios. 

 

⚫ Input: BERT Embedding 

⚫ Output: Top three most relevant TTPs techniques retrieved 

⚫ Objective: Improve the accuracy of CTI report classification 

 

Sub-problem 3: Integration with Large Language Models 

The final challenge involves combining retrieved results with a generative model to 

strengthen contextual reasoning and improve inference in threat analysis. 

 

⚫ Input: Prompt + TTPs’ procedure 

⚫ Output: Technique IDs within TTPs 

⚫ Objective: Improve the accuracy of TTPs extraction and classification. 

 

The proposed solution establishes a novel application pathway for RAG in the 

cybersecurity domain and provides a robust technical foundation for its deployment in CTI 

classification tasks. 

 

4. Proposed Method 

 

To address the challenges outlined in Section 3, this study proposes a model that integrates 
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fine-tuned BERT embeddings with a RAG framework for extracting TTPs from CTI. Compared 

with conventional RAG designs, the proposed model demonstrates superior performance. 

Section 4.1 presents the overall enhanced RAG architecture, while Section 4.2 details the fine-

tuning process of the BERT model that underpins the embedding component. 

 

4.1 Enhanced RAG Architecture  

 

In the proposed approach, fine-tuned embeddings derived from a BERT model trained on 

TTP classification are extracted and used to replace the generic embeddings within the RAG 

framework, as illustrated in Figure 1. These embeddings are stored in ChromaDB [33], an open-

source vector database selected for its scalability and efficient similarity search capabilities, and 

are employed to retrieve the most relevant TTPs through semantic matching. ChromaDB is 

specifically designed for vector data management, offering fast retrieval, a simple API, 

scalability, and stability. It also supports customizable index structures and real-time updates, 

making it particularly suitable for precise and efficient retrieval in RAG workflows. 

When a user submits a query, the system encodes it using the fine-tuned BERT embeddings 

trained on cybersecurity data, thereby capturing domain-specific terminology and contextual 

nuances. The resulting query vector is compared against the stored CTI embeddings in 

ChromaDB using semantic similarity measures, and the most relevant records are retrieved. 

The top three retrieved sentences are then passed to the retrieval module of the RAG 

architecture. These retrieved contents are incorporated into the prompt alongside the user’s 

query and subsequently forwarded to the language model. This process is implemented using 

the LangChain framework [17], which dynamically integrates the retrieved content with the 

query context to provide the language model with comprehensive semantic information. 

 

 

Figure 1: Our architecture of the enhanced RAG framework. 
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4.2 Fine-tuning BERT Embedding 

 

As an integral component of the architecture introduced in Section 4.1, BERT is fine-tuned 

to function as the embedding model within the retrieval module. While the pre-trained BERT 

model exhibits strong semantic understanding, its direct application to specialized downstream 

tasks such as CTI analysis requires task-specific fine-tuning. This process adapts BERT’s 

general linguistic knowledge to the semantic structures of the cybersecurity domain. 

Before fine-tuning, the dataset undergoes standardized preprocessing to convert it into an 

acceptable input format for the model. Tokenization, a core step in preprocessing, is performed 

using the WordPiece algorithm. This technique balances vocabulary size and semantic 

preservation by starting from individual characters and iteratively merging frequently co-

occurring subword units. As shown in Figure 2, the term “Drovorub” may be split into “Dor” 

and “##vor”, enabling the model to infer semantics even for previously unseen terminology. 

 

 

Figure 2: The example of wordpiece methodology. 

 

Within the BERT architecture, multiple Transformer encoder layers progressively capture 

syntactic and semantic representations through multi-head self-attention and feed-forward 

neural networks. During fine-tuning, input sentences are tokenized into subwords using the 

WordPiece algorithm, ensuring robust handling of domain-specific and out-of-vocabulary terms. 

These tokenized sequences are embedded and propagated through the encoder layers, where 

bidirectional contextual dependencies are modeled. For the classification task, the hidden state 

corresponding to the [CLS] token serves as the aggregated sentence representation, which is 

passed through a fully connected layer and optimized with task-specific objectives. A Softmax 

layer then outputs normalized probabilities across TTP categories. Through this fine-tuning 

process, BERT’s general linguistic capacity is effectively adapted to the cybersecurity domain, 

enabling more accurate interpretation of CTI semantics and improving downstream 

classification performance, as illustrated in Figure 3. 
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Figure 3: The architecture of the fine-tuned BERT model. 

 

This purposed method introduces three key innovations: (1) adopting TTPs instead of IoCs 

for more stable and effective CTI classification; (2) leveraging fine-tuned BERT embeddings 

with RAG to improve semantic understanding and accuracy; and (3) incorporating a decoder to 

enhance classification performance and provide interpretable reasoning. These innovations 

form the core of the enhanced RAG threat model, which advances CTI classification by 

overcoming the limitations of traditional content classification methods, offering higher 

accuracy and flexibility. 

 

5. Experimental Results 

 

To assess the effectiveness of the proposed method, we conducted experiments covering 

embedding configurations, retrieval parameters, and generative model performance, using 

annotated TTPs data as benchmarks. Evaluation primarily employed the F1-score in Sections 

5.2, while additional metrics, including Accuracy, Precision, and Recall, were reported in 

Section 5.3 for a more comprehensive comparison. We also examined key parameters such as 

Chunk_Size and Overlap_Size, where Chunk_Size defines the number of tokens in each text 
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segment and Overlap_Size specifies the portion shared between adjacent segments to preserve 

semantic continuity.  

 

5.1 Dataset 

 

The experimental dataset in this study is derived from the publicly available MITRE 

ATT&CK dataset [18] (ATT&CK v14.1, released in October 2023). To construct an embedding 

model capable of effectively identifying attack behaviors, we employed web scraping 

techniques to collect a total of 12,006 procedure examples from the database, each describing 

how a specific threat actor group or malware implements a given attack technique. These 

descriptions are essential for understanding the semantics of TTPs. 

To illustrate the dataset structure and annotation format more clearly, Figure 4 presents an 

example entry containing a description of a specific attack behavior and its corresponding 

MITRE ATT&CK Technique ID. The dataset distribution is visualized in Figure 5 as a heatmap, 

where the horizontal and vertical axes represent different MITRE ATT&CK Tactics. The color 

intensity indicates the frequency of occurrence of each tactic in the dataset, with darker colors 

signifying higher frequencies. This visualization helps identify any imbalance in data 

distribution, guiding training data design and model evaluation strategies. 

 

Figure 4: Dataset example. 
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For reproducibility, we performed dataset shuffling with a fixed random seed (set to 42) 

and split the data into training and test sets with a 9:1 ratio. This ensured that the model was 

exposed to a diverse range of attack techniques while avoiding overfitting. 

Figure 5: Dataset distribution map. 

 

5.2 Experimental Setup 

 

All experiments were conducted on an Ubuntu server equipped with an 11th Gen Intel® 

Core™ i7-11800H CPU (2.3 – 4.6 GHz, 8 cores), 16 GB RAM, and an RTX A5000 GPU with 

24 GB VRAM (8,192 CUDA cores). We tested multiple configurations of the RAG architecture, 

varying both embedding models and LLMs. 

For the embedding component, we compared OpenAI [34], all-MiniLM-L6-v2 [35], and 

BERT [11] to assess their suitability for CTI data. For the LLM component, we selected GPT-

4 and LLaMA-3, as they represent the latest generation of large-scale models. Additionally, we 

experimented with document segmentation parameters to identify the optimal encoding strategy. 

The key parameter tested was Chunk_Size, which defines the length of each document 

segment before embedding and retrieval. We evaluated Chunk_Size values from 100 to 500. As 

shown in Table 2, the highest F1-score of 0.90 was achieved when Chunk_Size was set to 500, 
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significantly outperforming other segment lengths. This indicates that longer contexts provide 

richer semantic information, improving both retrieval and generation accuracy. The Set Count 

column in Table 2 indicates the number of text segments produced at each setting, while 

Supports denotes the actual number of samples used for evaluation. 

 

Table 2: Chunk_Size for F1-score test. 

Set Count F1-score Supports 

100 0.58 1,201 

200 0.83 1,201 

300 0.89 1,201 

400 0.89 1,201 

500 0.90 1,201 

 

To further improve semantic continuity and answer accuracy, we considered Overlap_Size, 

which determines the proportion of overlapping context included in each retrieval query. 

Following Zhang et al. [36], who found that setting Overlap_Size to 20% of Chunk_Size 

optimizes coverage and efficiency, we fixed Overlap_Size at 100 tokens when using the optimal 

Chunk_Size of 500. 

 

5.2.1 BERT Hyperparameter Configuration 

 

Table 3: Hyperparameter for BERT. 

Hyperparameter Value 

Optimizer AdamW 

Loss Func. BCE 

Activation Func. Softmax 

Batch Size 256 

Epoch 100 

Learning rate 1e-4 

 

Table 3 lists the hyperparameters used during BERT fine-tuning. We employed AdamW 

[37] as the optimizer. The loss function was Binary Cross-Entropy (BCE) [38], suitable for 

single-label classification of TTP categories. The output layer used a Softmax activation to 

normalize class probabilities within the [0,1] range. 

We set the batch size to 256 to balance memory efficiency with stable gradient estimation, 

and trained for 100 epochs to ensure sufficient learning without overfitting. The learning rate 
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was set to 1e-4, a common initial value for BERT fine-tuning, balancing convergence speed 

and stability. Figure 6 shows the F1-score performance of the BERT model after fine-tuning. 

  

Figure 6: F1-score performance of the BERT model fine-tuning. 

 

5.2.2 Comparison of BERT, SecureBERT, and SecBERT 

 

We fine-tuned BERT, SecureBERT, and SecBERT to evaluate them as embedding layers 

within the RAG framework. As shown in Figure 7 and Table 4, BERT and SecureBERT both 

achieved an F1-score of 0.90, while SecBERT obtained 0.87, trailing by only 0.03 and still 

within an acceptable range. Given the minimal differences, all three models are viable in 

practice. We ultimately selected BERT for our RAG architecture due to its broader semantic 

adaptability, which better supports diverse CTI classification needs.  

 

Figure 7: BERT, SecureBERT, and SecBERT training comparison. 
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Table 4: Comparison of BERT, SecureBERT, and SecBERT. 

Model F1-score Supports 

BERT 0.90 1,201 

SecureBERT 0.90 1,201 

SecBERT 0.87 1,201 

 

5.3 Performance Evaluation 

 

When a user submits an unannotated CTI sample, the proposed enhanced RAG model 

classifies it into one of the 197 Technique IDs defined in the MITRE ATT&CK framework. 

Model performance was evaluated using standard metrics, including Accuracy, Precision, 

Recall, and F1-score. To further validate effectiveness, we conducted comparative experiments 

across different embedding models and LLM configurations.  

 

⚫ BERT — Fine-tuned BERT embeddings + linear classifier (no LLM decoder);  

⚫ OpenAI Embedding + GPT-4 — OpenAI embeddings with GPT-4 (March 2024);  

⚫ OpenAI Embedding + LLaMA-3 — OpenAI embeddings with LLaMA-3 decoder; 

⚫ all-MiniLM-L6-v2 + LLaMA-3 — Popular open-source embedding model with 

LLaMA-3;  

⚫ Proposed BERT Embedding + LLaMA-3 — Our fine-tuned BERT embeddings with 

LLaMA-3 decoder. 

 

In this study, the latest commercial version of GPT-4 was not included in the final 

evaluation due to data security concerns. According to OpenAI’s policies, API input data may 

be retained in system logs, posing potential risks of exposing sensitive CTI that contains 

enterprise defense strategies or attack records. To comply with security requirements, we 

prioritized the use of locally hosted LLMs for our experiments. 

According to the results presented in Figure 8 and Table 5, our proposed enhanced RAG 

architecture outperforms all comparative models, except for the fine-tuned BERT baseline, 

across all evaluation metrics, demonstrating particularly stable and superior accuracy in terms 

of the F1-score. Specifically, the fine-tuned BERT baseline achieved an F1-score of 0.94, while 

RAG models using OpenAI embeddings with GPT-4, OpenAI embeddings with LLaMA-3, and 

all-MiniLM-L6-v2 embeddings with LLaMA-3 achieved 0.54, 0.38, and 0.37, respectively. In 

contrast, our enhanced RAG model reached an F1-score of 0.93, confirming its effectiveness 

and robustness in CTI classification tasks. This indicates that the fine-tuned BERT embeddings 

can more effectively capture the terminology and patterns within the context of cyberattacks. 
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When combined with the language model decoder, this capability further enhances the model’s 

ability to capture semantic nuances and improve classification decisions 

It is worth noting that, compared to the fine-tuned BERT baseline model, the proposed 

enhanced RAG architecture achieves comparable performance across all metrics, 

demonstrating its ability to match the classification effectiveness of the baseline. This finding 

suggests that, in the context of a purely classification-oriented task, a fine-tuned BERT can 

directly determine the category of an input sentence without the need for retrieval. While RAG 

integrates the advantages of retrieval and generation, its final decision heavily depends on the 

quality of the retrieved results. When the BERT embeddings yield correct classifications, RAG 

can retrieve highly relevant information, thereby maintaining stable accuracy and recall. 

However, when BERT embeddings misclassify an instance, the retrieved content may deviate 

from the correct context, potentially misleading the LLM’s generative judgment and, in certain 

cases, resulting in slightly lower performance compared to the purely fine-tuned BERT model. 

 

Figure 8: Models Metric Compare. 

 

Table 5: Models Evaluation Comparison. 

Sets Precision Recall Accuracy F1-score 

BERT 0.94 0.94 0.94 0.94 

OpenAI Embedding + GPT-4 0.61 0.48 0.48 0.54 

OpenAI Embedding + LLaMA-3 0.38 0.37 0.37 0.38 

all-MiniLM-L6-v2 Embedding + LLaMA-

3 

0.39 0.37 0.37 0.37 

Ours 0.93 0.92 0.92 0.93 
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We also implemented a user-friendly interface to assist analysts in querying and classifying 

TTPs from CTI, as shown in Figure 9. Users can input descriptive threat information, and the 

system retrieves and ranks relevant Technique IDs along with their ATT&CK classification and 

technical summaries. This not only improves analysis efficiency but also lowers the learning 

curve for newcomers to the ATT&CK framework. 

 

Figure 9: Example of the program we developed. 

 

6. Conclusion 

 

This study proposes an enhanced RAG model tailored for CTI classification tasks. 

Experimental results demonstrate that conventional RAG embedding models, largely trained 

on general-purpose datasets, struggle to capture the specialized semantics of cybersecurity. By 

leveraging data from the MITRE ATT&CK framework, we trained a domain-specific 

embedding model and integrated it into the RAG architecture. Our approach significantly 

outperformed RAG models using OpenAI and all-MiniLM-L6-v2 embeddings, with traditional 

models achieving F1-scores between 37% and 54%, compared to 93% for our proposed model. 

This improvement highlights the necessity of domain-optimized embeddings for effective CTI 
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classification. Moreover, incorporating an LLM enhanced the contextual understanding and 

interpretability of classification results, offering more reliable decision support. In summary, 

the proposed method provides a robust and scalable solution for advancing automated CTI 

analysis. 
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