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Abstract

Cyber Threat Intelligence (CTI) analysis faces significant challenges due to the scale and
complexity of threat data. Large Language Models (LLMs) and Retrieval-Augmented
Generation (RAQG) offer promising solutions; however, existing approaches often struggle with
limited accuracy and hallucination. We propose an enhanced RAG framework that incorporates
fine-tuned BERT embeddings for semantic retrieval and technique annotation, coupled with
structured prompt generation to guide LLMs toward more precise and context-aware threat
analysis. Compared with traditional encoder-only architectures, our framework substantially
improves both accuracy and efficiency. Experiments conducted on the MITRE ATT&CK
database and recent open-source threat reports demonstrate that our model achieves an F1-score
0f 0.93, outperforming state-of-the-art baselines including GPT-4 and LLaMA-3. These results
highlight the potential of advanced RAG architectures to enable scalable, accurate, and

trustworthy automated CTI analysis.
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1. Introduction

With the rapid advancement of internet technologies, enterprises and organizations are
increasingly exposed to escalating cyber threats. To mitigate these risks, cybersecurity analysts
rely on Cyber Threat Intelligence (CTI) to anticipate potential attacks and develop defense
strategies, thereby improving the defensive posture of organizations [1, 2]. To systematically
identify and classify such threats, frameworks such as MITRE ATT&CK [3] are widely adopted.
MITRE ATT&CK, developed by the MITRE Corporation, is a globally recognized knowledge
base that categorizes cyber adversary behavior using the Tactics, Techniques, and Procedures
(TTPs) taxonomy. Tactics describe the overarching objectives or strategic goals of an adversary;
techniques specify the methods employed to achieve these objectives; procedures provide
detailed, step-by-step implementations of techniques in real-world scenarios.

TTPs offer a comprehensive representation of adversarial attack patterns, enabling analysts
to accurately pinpoint ongoing malicious activities and develop timely countermeasures. The
rapid growth of the Internet and social media platforms has dramatically increased the volume
of CTI [4]. However, discrepancies in CTI formats and quality across sources remain a
significant challenge [5]. For instance, unstructured CTI sources such as AlienVault [6] and
Twitter [7] often contain up-to-date findings from security analysts, but the content and scope
depend heavily on the discoverer’s focus. These inconsistencies increase the difficulty of
analysis, potentially lengthening response times and reducing detection accuracy. Traditional
manual classification of TTPs is a time-consuming task, requiring significant human expertise
and time. As the volume and complexity of CTI reports grow, this manual effort risks
overlooking critical attacker intent in real time, potentially leading to delayed or ineffective
defensive actions [8]. To address these issues, automated Al-based classification models for
techniques within TTPs can substantially reduce analyst workload, improve classification
accuracy, and enhance the timeliness of threat detection. Such automation enables faster and
more informed incident responses, thereby strengthening overall cybersecurity resilience.

The emergence of Large Language Models (LLMs) has opened new opportunities for CTI
analysis. Models such as GPT-3.5 [9], built upon the Transformer architecture [10], have shown
remarkable advances in semantic understanding and text generation. The Transformer’s
attention mechanism allows parallel processing across sequences, significantly improving
efficiency. Encoder-based models (e.g., Bidirectional Encoder Representations from
Transformers, BERT [11]) capture contextual semantics for text understanding, while decoder-
based models (e.g., ChatGPT [12]) excel in natural language generation. BERT is trained
through unsupervised pre-training tasks on large-scale general-domain corpora such as

BooksCorpus [13] and Wikipedia [14], capturing fundamental semantic and syntactic structures
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of natural language. However, to achieve optimal performance in domain-specific applications,
fine-tuning is essential. This process adapts the model’s general linguistic knowledge to
specialized domains such as cybersecurity, medical text analysis, and sentiment detection.
Despite their strengths, decoder-based models have been underutilized in CTI classification due
to the risk of hallucination, the tendency to generate plausible but incorrect outputs with high
confidence [15].

To address this limitation, Lewis et al. [16] introduced Retrieval-Augmented Generation
(RAG), a hybrid approach that integrates external knowledge retrieval with generative models.
By incorporating domain-specific evidence during generation, RAG mitigates hallucinations
and produces more accurate, factually grounded outputs. Building on this paradigm, the present
study proposes an enhanced RAG framework tailored for CTI classification, particularly
focusing on TTPs. The key contributions of our approach are threefold: (1) fine-tuned BERT
embeddings are employed to enrich contextual representations of cybersecurity-specific terms,
thereby improving retrieval precision and classification accuracy; (2) LangChain [17] -based
structured prompting is incorporated to guide response generation, ensuring that the model
explicitly acknowledges uncertainty rather than producing misleading classifications; and (3)
empirical validation using a dataset derived from the MITRE ATT&CK framework [18]
demonstrates that the proposed method achieves an Fl-score of 93%, outperforming
conventional deep learning-based CTI classification methods.

The remainder of this paper is organized as follows. Section 2 reviews related work in CTI
classification and compares existing methods with the proposed approach. Section 3 discusses
the challenges of applying LLMs to CTI and explains how RAG addresses hallucination issues.
Section 4 details the proposed method of the enhanced RAG framework, including architectural
design, embedding strategies, and its application to CTI. Section 5 outlines the experimental
setup, dataset preprocessing, and presents the results with performance analysis. Finally,

Section 6 concludes with a summary of contributions.

2. Related Work

This section reviews the evolution of automated techniques for extracting and classifying
TTPs in CTI. The discussion begins with traditional rule-based approaches, progresses through
early machine learning methods, and concludes with the most recent advances in LLMs. Each
category is examined in terms of its suitability for TTP extraction tasks, with particular attention

to its strengths, limitations, and the challenges that motivate this study.

2.1 Traditional Rule-Based and Early Machine Learning Methods

22



C@_AS‘_A_ Communications of the CCISA
-——== Regular Paper
Vol. 31 No. 3 Aug. 2025

Early research on TTP extraction and classification can generally be divided into rule-
based and machine learning approaches. Rule-based methods rely on expert-crafted heuristics,
such as regular expressions and domain-specific keyword lists, to identify TTPs from
unstructured reports. For instance, Husari et al. [19] developed TTPDrill, which employed
syntactic patterns and ontology mapping to align extracted behaviors with the MITRE
ATT&CK framework. While these approaches achieve high precision and strong
interpretability, they are costly to maintain and struggle to accommodate linguistic diversity
and novel threats. To improve scalability, researchers later turned to supervised machine
learning, leveraging features such as n-grams, contextual cues, and positional information to
train classifiers. For example, Sharma et al. [20] introduced RADAR, an extensible TTP-based
system that applies machine learning to network traffic analysis and malware detection,
demonstrating the practical utility of TTP-aware models in real-world security tasks. These
models can automatically learn patterns from data and adapt more flexibly to evolving threats;
however, they tend to be less interpretable and remain highly dependent on data quality. The
limitations of both rule-based and traditional machine learning approaches ultimately motivated
the transition toward deep learning and semantic modeling as more robust solutions for TTP

classification.

2.2 Applications of Deep Learning for TTPs Classification Tasks

To overcome the limitations of rule-based methods, recent studies have increasingly
adopted deep learning approaches, particularly Transformer-based models [10]. BERT [11],
with its strong capability for contextual semantic modeling, has been widely applied to extract
TTPs from CTI reports. For instance, You et al. [21] proposed the TIM framework, which
formulates TTP classification as a sentence-level task and integrates TCENet to capture
contextual semantics, thereby enhancing classification performance. Nonetheless, the
effectiveness of such models remains constrained by data quality and the comprehensiveness
of semantic representations. To address class imbalance, Kim et al. [22] employed Easy Data
Augmentation (EDA), which generates synthetic samples through operations such as synonym
replacement, random insertion, word swapping, and deletion. While EDA increases diversity in
low-resource categories, its surface-level transformations often introduce noise and fail to
capture deeper semantic structures, thereby limiting its impact on classification accuracy. To
improve domain relevance, researchers have developed specialized models such as
SecureBERT [23], trained on cybersecurity corpora, and SecBERT [24], fine-tuned on datasets
including APTnotes [25], Stucco-Data [26], CASIE [27], and SemEval [28]. These domain-
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adapted models demonstrate superior performance compared to general-purpose language
models.

With the advent of LLMs such as GPT-4 [29] and LLaMA-3 [30], deep learning has
achieved significant advances in natural language understanding and generation. LLMs are
capable of performing complex reasoning and knowledge transfer with minimal reliance on
labeled data. In the context of TTP classification, LLMs can emulate the role of a security
analyst by extracting and categorizing relevant TTPs from documents without the need for
manual rule engineering or extensive annotation. The long-context decoder architecture of
LLaMA-3 is particularly well-suited for cross-paragraph reasoning and semantic integration in
CTI reports. Nevertheless, LLMs remain susceptible to hallucination [31], producing outputs
that appear plausible but are factually inaccurate in the absence of explicit knowledge support.
They also suffer from delayed knowledge updates, as their knowledge is fixed at the time of
training. Moreover, domain-agnostic models may misinterpret cybersecurity-specific
terminology and syntax, thereby reducing classification accuracy.

In addition to leveraging BERT for feature extraction, another line of research focuses on
directly fine-tuning LLMs to internalize cybersecurity domain knowledge. For example,
Fengrui et al. [32] proposed a TTP classification framework that combines few-shot learning
with instruction-tuning strategies. Their method employed ChatGPT to generate diverse TTP
descriptions for augmenting rare classes and subsequently fine-tuned Llama-2-7B for task-
specific classification of MITRE ATT&CK techniques. While this approach relies solely on
LLM-based classification without an external retrieval module, it provides valuable insights
into TTP automation through data augmentation and fine-tuning. Nonetheless, such methods
face notable challenges: (1) high computational costs, as fine-tuning multi-billion-parameter
models requires substantial GPU resources, and (2) delayed knowledge updates, since

retraining is necessary to incorporate new threat intelligence.
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Table 1: TTPs Classification Research Method Capability Comparison Table.

Domain_ Long_ Unstructured
Classification
Specific Retrieval Context Data
Study ) » ) . Task
Semantic Capability | Reasoning Processing .
. . o Interpretability
Adaptability Ability Ability
Husari et al. [19] v X X v X
Sharma et al. [20] v X X v X
You et al. [21] v X X v X
Kim et al. [22] v X X X X
Aghaci et al. [23] v X X v X
Kun et al. [24] v X X v X
Fengrui et al. [32] v X v v v
Ours v v v v v

In contrast, the enhanced RAG framework proposed in this study fine-tunes only a
lightweight BERT to improve retrieval accuracy, significantly reducing computational costs.
The RAG architecture further enables immediate knowledge updates by incorporating new CTI
documents into the vector database and offers traceable evidence for classification decisions,
thereby mitigating hallucination risk. Table 1 compares common TTP classification methods
with the proposed approach across dimensions such as semantic adaptability, retrieval capability,
long-context reasoning, ability to process unstructured data, and interpretability, underscoring

the comprehensive advantages of our framework.

3. Problem Statement

Recent advances in NLP have facilitated the adoption of RAG and LLMs in CTI
classification tasks. Despite these developments, several challenges remain. General-purpose
embeddings often fail to capture the domain-specific semantics of cybersecurity, thereby
limiting classification accuracy. RAG architectures further demand embeddings that are both
semantically precise and contextually aligned with threat intelligence data. In addition,
generative models frequently struggle to produce reliable and interpretable outputs without

carefully structured prompt guidance. To address these limitations, this study decomposes the
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research problem into three sub-problems, each targeting a critical component of the overall

solution.

Sub-problem 1: Development of an Embedding Model
The first challenge is to obtain embeddings that effectively capture the fine-grained
semantics of TTPs. General-purpose embeddings often overlook cybersecurity-specific

concepts, reducing retrieval and classification accuracy.

® Input: CTI documents
®  Output: BERT Embedding
® Objective: Extract high-quality embeddings for TTP classification, maximizing

retrieval accuracy and efficiency

Sub-problem 2: Construction of the Retrieval-Augmented Generation Model
The second challenge focuses on integrating a RAG framework to enhance contextual

relevance and inference capabilities for contemporary threat scenarios.

® Input: BERT Embedding
®  OQutput: Top three most relevant TTPs techniques retrieved

® Objective: Improve the accuracy of CTI report classification

Sub-problem 3: Integration with Large Language Models
The final challenge involves combining retrieved results with a generative model to

strengthen contextual reasoning and improve inference in threat analysis.

® Input: Prompt + TTPs’ procedure
®  Output: Technique IDs within TTPs

® Objective: Improve the accuracy of TTPs extraction and classification.

The proposed solution establishes a novel application pathway for RAG in the
cybersecurity domain and provides a robust technical foundation for its deployment in CTI

classification tasks.
4. Proposed Method

To address the challenges outlined in Section 3, this study proposes a model that integrates
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fine-tuned BERT embeddings with a RAG framework for extracting TTPs from CTI. Compared
with conventional RAG designs, the proposed model demonstrates superior performance.
Section 4.1 presents the overall enhanced RAG architecture, while Section 4.2 details the fine-

tuning process of the BERT model that underpins the embedding component.
4.1 Enhanced RAG Architecture

In the proposed approach, fine-tuned embeddings derived from a BERT model trained on
TTP classification are extracted and used to replace the generic embeddings within the RAG
framework, as illustrated in Figure 1. These embeddings are stored in ChromaDB [33], an open-
source vector database selected for its scalability and efficient similarity search capabilities, and
are employed to retrieve the most relevant TTPs through semantic matching. ChromaDB is
specifically designed for vector data management, offering fast retrieval, a simple API,
scalability, and stability. It also supports customizable index structures and real-time updates,
making it particularly suitable for precise and efficient retrieval in RAG workflows.

When a user submits a query, the system encodes it using the fine-tuned BERT embeddings
trained on cybersecurity data, thereby capturing domain-specific terminology and contextual
nuances. The resulting query vector is compared against the stored CTI embeddings in
ChromaDB using semantic similarity measures, and the most relevant records are retrieved.
The top three retrieved sentences are then passed to the retrieval module of the RAG
architecture. These retrieved contents are incorporated into the prompt alongside the user’s
query and subsequently forwarded to the language model. This process is implemented using
the LangChain framework [17], which dynamically integrates the retrieved content with the

query context to provide the language model with comprehensive semantic information.

BERT Embeding

Y

M E Retrieval
— ==, Q——»

Documents VectorDB Top3 Relevant Text

Similarity
Search

@—b Response

Input
Query

User

Figure 1: Our architecture of the enhanced RAG framework.
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4.2 Fine-tuning BERT Embedding

As an integral component of the architecture introduced in Section 4.1, BERT is fine-tuned
to function as the embedding model within the retrieval module. While the pre-trained BERT
model exhibits strong semantic understanding, its direct application to specialized downstream
tasks such as CTI analysis requires task-specific fine-tuning. This process adapts BERT’s
general linguistic knowledge to the semantic structures of the cybersecurity domain.

Before fine-tuning, the dataset undergoes standardized preprocessing to convert it into an
acceptable input format for the model. Tokenization, a core step in preprocessing, is performed
using the WordPiece algorithm. This technique balances vocabulary size and semantic
preservation by starting from individual characters and iteratively merging frequently co-
occurring subword units. As shown in Figure 2, the term “Drovorub” may be split into “Dor”

and “##vor”, enabling the model to infer semantics even for previously unseen terminology.

WordPiece Dro ##vor ##ub has used X ##OR encr ##ypted pay
alg. ##loads in Web So ##cket client to server mess ##ages
A

Input Drovorub has used XOR encrypted payloads
in WebSocket client to server messages

Figure 2: The example of wordpiece methodology.

Within the BERT architecture, multiple Transformer encoder layers progressively capture
syntactic and semantic representations through multi-head self-attention and feed-forward
neural networks. During fine-tuning, input sentences are tokenized into subwords using the
WordPiece algorithm, ensuring robust handling of domain-specific and out-of-vocabulary terms.
These tokenized sequences are embedded and propagated through the encoder layers, where
bidirectional contextual dependencies are modeled. For the classification task, the hidden state
corresponding to the [CLS] token serves as the aggregated sentence representation, which is
passed through a fully connected layer and optimized with task-specific objectives. A Softmax
layer then outputs normalized probabilities across TTP categories. Through this fine-tuning
process, BERT’s general linguistic capacity is effectively adapted to the cybersecurity domain,
enabling more accurate interpretation of CTI semantics and improving downstream

classification performance, as illustrated in Figure 3.
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Figure 3: The architecture of the fine-tuned BERT model.

This purposed method introduces three key innovations: (1) adopting TTPs instead of IoCs
for more stable and effective CTI classification; (2) leveraging fine-tuned BERT embeddings
with RAG to improve semantic understanding and accuracy; and (3) incorporating a decoder to
enhance classification performance and provide interpretable reasoning. These innovations
form the core of the enhanced RAG threat model, which advances CTI classification by
overcoming the limitations of traditional content classification methods, offering higher
accuracy and flexibility.

5. Experimental Results

To assess the effectiveness of the proposed method, we conducted experiments covering
embedding configurations, retrieval parameters, and generative model performance, using
annotated TTPs data as benchmarks. Evaluation primarily employed the F1-score in Sections
5.2, while additional metrics, including Accuracy, Precision, and Recall, were reported in
Section 5.3 for a more comprehensive comparison. We also examined key parameters such as

Chunk Size and Overlap Size, where Chunk Size defines the number of tokens in each text
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segment and Overlap Size specifies the portion shared between adjacent segments to preserve

semantic continuity.

5.1 Dataset

The experimental dataset in this study is derived from the publicly available MITRE
ATT&CK dataset [18] (ATT&CK v14.1, released in October 2023). To construct an embedding
model capable of effectively identifying attack behaviors, we employed web scraping
techniques to collect a total of 12,006 procedure examples from the database, each describing
how a specific threat actor group or malware implements a given attack technique. These
descriptions are essential for understanding the semantics of TTPs.

To illustrate the dataset structure and annotation format more clearly, Figure 4 presents an
example entry containing a description of a specific attack behavior and its corresponding
MITRE ATT&CK Technique ID. The dataset distribution is visualized in Figure 5 as a heatmap,
where the horizontal and vertical axes represent different MITRE ATT&CK Tactics. The color
intensity indicates the frequency of occurrence of each tactic in the dataset, with darker colors
signifying higher frequencies. This visualization helps identify any imbalance in data

distribution, guiding training data design and model evaluation strategies.

"text": "Transparent Tribe has used dynamic DNS services to set up C2.",
"technique_id": "T1568"

Figure 4: Dataset example.
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For reproducibility, we performed dataset shuffling with a fixed random seed (set to 42)
and split the data into training and test sets with a 9:1 ratio. This ensured that the model was

exposed to a diverse range of attack techniques while avoiding overfitting.

Tactics Overlap Heatmap
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Lateral Movement - o
Privilege Escalation - o

Command and Control - o
Credential Access - o
Resource Development -

Figure 5: Dataset distribution map.

5.2 Experimental Setup

All experiments were conducted on an Ubuntu server equipped with an 11th Gen Intel®
Core™ 17-11800H CPU (2.3 — 4.6 GHz, 8 cores), 16 GB RAM, and an RTX A5000 GPU with
24 GB VRAM (8,192 CUDA cores). We tested multiple configurations of the RAG architecture,
varying both embedding models and LLMs.

For the embedding component, we compared OpenAl [34], all-MiniLM-L6-v2 [35], and
BERT [11] to assess their suitability for CTI data. For the LLM component, we selected GPT-
4 and LLaMA-3, as they represent the latest generation of large-scale models. Additionally, we
experimented with document segmentation parameters to identify the optimal encoding strategy.

The key parameter tested was Chunk Size, which defines the length of each document
segment before embedding and retrieval. We evaluated Chunk Size values from 100 to 500. As
shown in Table 2, the highest F1-score of 0.90 was achieved when Chunk Size was set to 500,
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significantly outperforming other segment lengths. This indicates that longer contexts provide
richer semantic information, improving both retrieval and generation accuracy. The Set Count
column in Table 2 indicates the number of text segments produced at each setting, while

Supports denotes the actual number of samples used for evaluation.

Table 2: Chunk Size for F1-score test.

Set Count | Fl-score | Supports
100 0.58 1,201
200 0.83 1,201
300 0.89 1,201
400 0.89 1,201
500 0.90 1,201

To further improve semantic continuity and answer accuracy, we considered Overlap _Size,
which determines the proportion of overlapping context included in each retrieval query.
Following Zhang et al. [36], who found that setting Overlap Size to 20% of Chunk Size
optimizes coverage and efficiency, we fixed Overlap Size at 100 tokens when using the optimal
Chunk_Size of 500.

5.2.1 BERT Hyperparameter Configuration

Table 3: Hyperparameter for BERT.

Hyperparameter Value
Optimizer AdamW
Loss Func. BCE
Activation Func. Softmax
Batch Size 256
Epoch 100
Learning rate le-4

Table 3 lists the hyperparameters used during BERT fine-tuning. We employed AdamW
[37] as the optimizer. The loss function was Binary Cross-Entropy (BCE) [38], suitable for
single-label classification of TTP categories. The output layer used a Softmax activation to
normalize class probabilities within the [0,1] range.

We set the batch size to 256 to balance memory efficiency with stable gradient estimation,

and trained for 100 epochs to ensure sufficient learning without overfitting. The learning rate
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was set to le-4, a common initial value for BERT fine-tuning, balancing convergence speed
and stability. Figure 6 shows the F1-score performance of the BERT model after fine-tuning.

___F1 Score per Epoch

F1 Score

0 10 20 30 40 50 60 70 80 %0 100
Epoch

Figure 6: F1-score performance of the BERT model fine-tuning.
5.2.2 Comparison of BERT, SecureBERT, and SecBERT

We fine-tuned BERT, SecureBERT, and SecBERT to evaluate them as embedding layers
within the RAG framework. As shown in Figure 7 and Table 4, BERT and SecureBERT both
achieved an Fl-score of 0.90, while SecBERT obtained 0.87, trailing by only 0.03 and still
within an acceptable range. Given the minimal differences, all three models are viable in
practice. We ultimately selected BERT for our RAG architecture due to its broader semantic

adaptability, which better supports diverse CTI classification needs.

F1 Score compare

—e— SecureBERT
#— BaseBERT
0.9 —e— SecBERT

i Lasii PP ‘f.'Il‘.;civ'v-’—»‘»‘—h‘«'.“« CBEEE

F1 Score

0 20 40 60 80 100
Epoch

Figure 7: BERT, SecureBERT, and SecBERT training comparison.
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Table 4: Comparison of BERT, SecureBERT, and SecBERT.

Model F1-score | Supports
BERT 0.90 1,201
SecureBERT 0.90 1,201
SecBERT 0.87 1,201

5.3 Performance Evaluation

When a user submits an unannotated CTI sample, the proposed enhanced RAG model
classifies it into one of the 197 Technique IDs defined in the MITRE ATT&CK framework.
Model performance was evaluated using standard metrics, including Accuracy, Precision,
Recall, and F1-score. To further validate effectiveness, we conducted comparative experiments

across different embedding models and LLM configurations.

BERT — Fine-tuned BERT embeddings + linear classifier (no LLM decoder);

OpenAl Embedding + GPT-4 — OpenAl embeddings with GPT-4 (March 2024);
OpenAl Embedding + LLaMA-3 — OpenAl embeddings with LLaMA-3 decoder;
all-MiniLM-L6-v2 + LLaMA-3 — Popular open-source embedding model with
LLaMA-3;

® Proposed BERT Embedding + LLaMA-3 — Our fine-tuned BERT embeddings with
LLaMA-3 decoder.

In this study, the latest commercial version of GPT-4 was not included in the final
evaluation due to data security concerns. According to OpenAlI’s policies, API input data may
be retained in system logs, posing potential risks of exposing sensitive CTI that contains
enterprise defense strategies or attack records. To comply with security requirements, we
prioritized the use of locally hosted LLMs for our experiments.

According to the results presented in Figure 8 and Table 5, our proposed enhanced RAG
architecture outperforms all comparative models, except for the fine-tuned BERT baseline,
across all evaluation metrics, demonstrating particularly stable and superior accuracy in terms
of the F1-score. Specifically, the fine-tuned BERT baseline achieved an F1-score of 0.94, while
RAG models using OpenAl embeddings with GPT-4, OpenAl embeddings with LLaMA-3, and
all-MiniLM-L6-v2 embeddings with LLaMA-3 achieved 0.54, 0.38, and 0.37, respectively. In
contrast, our enhanced RAG model reached an F1-score of 0.93, confirming its effectiveness
and robustness in CTI classification tasks. This indicates that the fine-tuned BERT embeddings

can more effectively capture the terminology and patterns within the context of cyberattacks.
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When combined with the language model decoder, this capability further enhances the model’s
ability to capture semantic nuances and improve classification decisions

It is worth noting that, compared to the fine-tuned BERT baseline model, the proposed
enhanced RAG architecture achieves comparable performance across all metrics,
demonstrating its ability to match the classification effectiveness of the baseline. This finding
suggests that, in the context of a purely classification-oriented task, a fine-tuned BERT can
directly determine the category of an input sentence without the need for retrieval. While RAG
integrates the advantages of retrieval and generation, its final decision heavily depends on the
quality of the retrieved results. When the BERT embeddings yield correct classifications, RAG
can retrieve highly relevant information, thereby maintaining stable accuracy and recall.
However, when BERT embeddings misclassify an instance, the retrieved content may deviate
from the correct context, potentially misleading the LLM’s generative judgment and, in certain

cases, resulting in slightly lower performance compared to the purely fine-tuned BERT model.

Model Metric Comparison

10
mmm BERT

s OpenAl_Emb + GPT4

e OpenAl Emb + LLaMA3 09
B all-MiniLM-L6-v2_Emb + LLaMA3
mmm Our Model

0.94 0.94 0.94 0.94
0.93 0.92 0.92 0.93

08

07

0.6

Score

0.5

0.4

03

02

01

Precision Recall Accuracy F1-Score
Metric

Figure 8: Models Metric Compare.

Table 5: Models Evaluation Comparison.

Sets Precision | Recall | Accuracy | Fl-score
BERT 0.94 0.94 0.94 0.94
OpenAl Embedding + GPT-4 0.61 0.48 0.48 0.54
OpenAl Embedding + LLaMA-3 0.38 0.37 0.37 0.38
all-MiniLM-L6-v2 Embedding + LLaMA- 0.39 0.37 0.37 0.37
3

Ours 0.93 0.92 0.92 0.93
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We also implemented a user-friendly interface to assist analysts in querying and classifying
TTPs from CTI, as shown in Figure 9. Users can input descriptive threat information, and the
system retrieves and ranks relevant Technique IDs along with their ATT&CK classification and
technical summaries. This not only improves analysis efficiency but also lowers the learning

curve for newcomers to the ATT&CK framework.

Enter text and call the API

[Re\renge RAT uses mshta.exe to run malicious scripts on the system.

Information returned by API

User input :
Based on this ‘Revenge RAT uses mshia.exe to run malicious scripts on the system., what is
the most likely technique 1D7?

Answer :
Based on the provided context, the most likely technique 1D 1s T1218, which refers to the use of
mshta.exe for code execution

Info1:
APT32 has used mshta exe for code execution

Info11D:
71218

Info 2:
Pteranodon can use mshia exe to execute an HTA file hosted on a remote server,

Info 21D :
T1218

Info 3:
LazyScripter has used mshta exe to execute Koadic stagers

Info 31D :
T1218

Figure 9: Example of the program we developed.
6. Conclusion

This study proposes an enhanced RAG model tailored for CTI classification tasks.
Experimental results demonstrate that conventional RAG embedding models, largely trained
on general-purpose datasets, struggle to capture the specialized semantics of cybersecurity. By
leveraging data from the MITRE ATT&CK framework, we trained a domain-specific
embedding model and integrated it into the RAG architecture. Our approach significantly
outperformed RAG models using OpenAl and all-MiniLM-L6-v2 embeddings, with traditional
models achieving F1-scores between 37% and 54%, compared to 93% for our proposed model.

This improvement highlights the necessity of domain-optimized embeddings for effective CTI
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classification. Moreover, incorporating an LLM enhanced the contextual understanding and

interpretability of classification results, offering more reliable decision support. In summary,

the proposed method provides a robust and scalable solution for advancing automated CTI

analysis.
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