

Regular Paper
Communications_of_the_CCISA

Vol._26__No._2__May._2020

1

Efficient schemes with diverse of a pair of circulant matrices for

AES MixColumns-InvMixcolumns transformation

Jeng-Jung Wang
1
, Yan-Haw Chen

2*
, Guan-Hsiung Liaw

3
, Jack Chang

4
, Cheng-Chih Lee

5

1,2,3,5
Dept. of Information Engineering, I-Shou University, Kaohsiung, Taiwan 84008.

4
Intellectual Property Group, Davis, Wright, & Tremaine, Seattle, Washington, USA

1,2,3,5
yanchen@isu.edu.tw,

4
JackChang@dwt.com

Abstract

Recently, AES is a commonly used encryption-decryption algorithm applied to wireless

communication protocols. However, confidentiality and speed both associated with

Cipher-InvCipher that are a very important issue in many current communication systems. In

this paper, the key idea here is to propose a method with more variations in circulant matrix

for enhancing security in AES MixColumns-InvMixColumns step. The paper is also to

propose a method minimizes the number of multiplications for matrix multiplication

theoretically based on two-point cyclic convolution properties of circulant matrix. The

conventional 44 matrix multiplication typically needs 16 multiplications and 12 additions;

however, the proposed method, described herein as Scheme 3, can reduce the matrix

multiplications into 5 multiplications and 15 additions, which is used for encryption and

decryption. Using Scheme 3 and Horner’s rule-based multiplication running on Intel CPU, the

computational cost of the matrix multiplication can be reduced by ~63%. Furthermore,

experiments using Scheme 3 along with Horner’s rule-based multiplication by means of AES

keys lengths with 128, 192, 256 bits were tested by running on STM32L476VG MCU, result

leads to the reduction of encryption and decryption time respectively by ~60%. Finally, the

proposed procedure enables found many a pair of the circulant matrices for AES

Cipher-InvCipher so that diverse of a pair of the circulant matrices can enhance security of the

data transmission.

Keywords: AES; Circulant; Lookup Table; Finite Field; Multiplication

*Corresponding author. Email: yanchen@isu.edu.tw, Fax: (886-7)-657-8944.

mailto:1yanchen@isu.edu.tw
mailto:JackChang@dwt.com

Regular Paper
Communications_of_the_CCISA

Vol._26__No._2__May._2020

2

1. Introduction

New features are being introduced and protecting data transmission is now more

important than ever. Thus, an improvement to efficiently apply the Advanced Encryption

Standard (AES) to communication systems, and cloud computing in healthcare systems [18]

are important. The MixColumns-InvMixColumns transformation [13] is one of the functions

in the Cipher-InvCipher. In AES, MixColumns transformation is a computationally expensive

operation where the input matrix is multiplied with the MDS matrix. This transformation

plays an important role with respect to the wide trail strategy in the cipher. In the early, the

MDS matrix is also using in error correction code which authors by Lacan [14] and

Macwillanms [9] have performed cyclic convolution of complex values with a hybrid

transformation over finite fields. There exists several new research directions suggested by

searching methods for finding MDS matrices in [7][8][16][17]. Moreover, in [10] has shown

that the method can generate a random MDS matrix, and those techniques can be enhanced by

dynamic MDS matrices. The diversity circulant matrices are used in the modern

cryptographic method in AES. The computation of MDS matrix might be used in the

encryption and decryption such as Rijndael method and Twofish method in [5]. However,

these articles fail to mention to get inverse MDS matrices method.

Furthermore, due to attacks [1] on AES-128 using known-key distinguishing attack with

a computation complexity 2 method, this leads to opportunities to enhance security of data

transmission. We propose using different coefficients of the polynomial A(x) and the inverse

polynomial A(x), namely A
-1

(x). They are used in AES MixColumns-InvColumns by using

some of the bits from the AES key as an index to find the variations of the coefficients of the

polynomial. The method would be more difficult for attackers to locate and thus less prone to

attacks in general. This paper also proposes an efficient method to find pairs consisting of the

polynomial A(x) and A
-1

(x) by the Find_inv_matrix() procedure. Scheme 3, as descried in this

paper, may be designed as a circuit in VLSI, see [2][4][6][15][11][20], which can be used to

decrease logic gates. The matrix product operation can be used with distinct method of the

multiplication in finite field see [3][12]. The method also can provide the security of the data

transfer to the health monitoring system on ARM-based microcontrollers [18].

The remaining portion of this paper is organized as follows: Section 2 introduces

enhanced security in AES MixColumns step. Section 3 discusses the multiplication in finite

field concepts necessary for further developments, and also proposes methods to reduce the

multiplication in matrix products for the AES encryption-decryption which these methods are

called Scheme 1, Scheme 2, and Scheme 3, respectively. Section 4 proposes an efficient

method that can be found in the entries at the first row vectors of the matrix A and the first

Regular Paper
Communications_of_the_CCISA

Vol._26__No._2__May._2020

3

row vectors of the inverse matrix A for using in AES MixColumns-InvMixColumns step.

Section 5 presents a performance analysis of AES Cipher-InvCipher on Intel CPU and

STM32L476VG ARM-based MCU. Section 6 concludes the paper.

2. Enhanced security in AES MixColumns step

This paper mainly is not focused on fix polynomial a(x) in AES MixColumns

transformation. We aim to enhance security of this AES algorithm with diversity

MixColumns of the coefficients of polynomial that can be for increasing security. Since, if

data is given in both plaintext and ciphertext, the determining the key would require an

exhaustive search. However, Encrypting and decrypting data is must to know the Table A and

Table B as shown in Figure 1. In other words, the key cannot be known from the plaintext and

the ciphertext because the ciphertext and plaintext are obtained from AES standard

MixColumns (02, 03, 01, 01) and InvMixColumns (oe, ob, od, 09) transformation.

Furthermore, it might be sent the coefficient of the polynomial a(x) by elliptic curve

cryptography of the ECDH algorithm to receiver. Receiver got the polynomial a(x) must to

compute inverse the polynomial a(x) for decryption. So that it does not need to the Tabe A

and Tabe B.

Figure 1: Some bits of a key as index of coefficients

Regular Paper
Communications_of_the_CCISA

Vol._26__No._2__May._2020

4

3. Fast matrix multiplication in AES Mixcolumns step

A new method for computing of circulant matrix is described herein that is based on the

2-point cyclic convolution matrix. This section consists of three subsections, in the first

subsection describes different method of the multiplication over finite field for matrix

multiplication that can be also applied to matrix operation. Besides, Scheme 1, which uses a

two point cyclic matrix for reducing multiplication of the matrix product, and Scheme 2 uses

2 multiplied by any element in GF(2
m

) which is zero for reducing a multiplication. The

coefficients of the polynomial A(x) has the property
23210)(raaaa  , where aj is over

GF(2
m

), which can use lookup table method for reducing 4 multiplications. Lastly, Scheme 3

uses sum of the coefficients of the polynomial A(x) that has the properties 1)(3210  aaaa ,

which reduce 4 multiplications in Scheme 3.

3.1 Multiplication over finite field

Let im

i i xaxa 





1

0
)(and 






1

0
)(

m

i

i

i xbxb be polynomial equation of degree m-1 in GF(2
m

),

where ai, bi {0, 1}. It is well know that finite field addition is defined as:

),()()(xbxaxc  (1)

Note that the symbol of “+” is XOR bitwise operation so it does not need extra defined

function in C programming. Finite field multiplication is defined as:

),(mod)()()(xfxbxaxc  (2)

where the AES algorithm with multiplication is irreducible polynomial

1)(348  xxxxxf . In (2), the Russian Peasant method can be written as a function in C

programming as follows:

Regular Paper
Communications_of_the_CCISA

Vol._26__No._2__May._2020

5

Russian Peasant method

unsigned char GFM(unsigned char a, unsigned char b){

unsigned char c = 0;

for(int i = 0; i < 8; i++){

 if (b & 1)

 c ^= a;

 if (a & 0x80)

 a = (a << 1) ^ 0x11b;

 else

 a <<= 1;

 b >>= 1;

 }

return p;

}

In (2), the proposed multiplication can be evaluated by using Horner’s rule, according to the

following recursive formula,))(mod)(mod))(mod((()(45

2

67 BaxfBxaxfxBaxfBxaxc 

,)(mod)(mod 01

2 BaxfBxaxfx  where B is represented as the polynomial b(x).

Thus, an expression))(mod(BaxfBxa ji  can be represented as a lookup table as following

],[Bt ji aa))(mod(BaxfBxa ji  , where)2(, GFaa ji  . Let],[Bt ji aa be c, the 2cxc 

)(mod xf can be represented as],[f 21

2

 mm cccxc , where)()(],[f xrecxxreccc jiji  and

)(mod)(xfxxre m is a remainder polynomial (e.g., re(x)= 134  xxx , binary 11001, Hex

0x1b). Horner’s rule method is rewritten in C programming as shown below:

Horner’s rule

unsigned char f[4]; unsigned char Bt[4];

unsigned char GFM(unsigned char a, unsigned char b){

 unsigned char c; f[0] = 0; f[1] = 0x1b; f[2] = 0x36; f[3] = 0x2d; Bt[0] = 0; Bt[1] = b;

 if (b & 0x80)

 Bt[2] = (b << 1) ^ 0x1b;

 else

 Bt[2] = (b << 1);

 Bt[3] = Bt[2] ^ b;

 c= Bt[(a >> 6) & 0x3];

 c=(c << 2) ^ f[c >> 6] ^ Bt[(a >> 4) & 0x3];

 c=(c << 2) ^ f[c >> 6] ^ Bt[(a >> 2) & 0x3];

 c=(c << 2) ^ f[c >> 6] ^ Bt[a & 0x3];

 return c;

}

As mentioned above, the two methods of multiplication can be used for making an 2D array

GFMT[][] for lookup table method (i.e., GFMT[i][j]=GFM(i,j) where 0 i, j  255). An array

Regular Paper
Communications_of_the_CCISA

Vol._26__No._2__May._2020

6

GFMT[][] needs 256*256=64K bytes for saving data. The lookup table method is shown as

below:

Lookup table method

unsigned char GFM(unsigned char a, unsigned char b)

{

 unsigned char c=0;

 c=GTMT[a][b];

 return c;

}

3.2 Reducing multiplications in matrix multiplication

The AES MixColumns transformation, the modular product of A(x) and B(x), is

presented as the four-term polynomial D(x), defined as

)(mod)()()(xTxBxAxD  (3)

where ,1)(4  xxT
01

2

2

3

3)(axaxaxaxA  and
01

2

2

3

3)(bxbxbxbxB  , for)2(, m

ii GFba  .

By (3), there is a circulant matrix form as:

.

3

2

1

0

0123

3012

2301

1230

3

2

1

0

























































b

b

b

b

aaaa

aaaa

aaaa

aaaa

d

d

d

d

(4)

In (4), the matrix D is a product of matrices A and B, which requires 16 multiplications and 12

additions (16M, 12A) listed below:

(16M, 12A)

302112033

332011022

322310011

312213000

babababad

babababad

babababad

babababad









Regular Paper
Communications_of_the_CCISA

Vol._26__No._2__May._2020

7

Using the two-point cyclic convolution matrix property for 22 matrices multiplication is

given by:

   

   
.

y

010100

110100

1

0

01

10

1

0








































baabba

baabba

b

b

aa

aa

y
 (5)

Hence, the method only requires 3 multiplications and 4 additions (3M, 3A) as shown in

Table 1.

Table 1: The two-point cyclic convolution method with (3M, 3A).

)(1000 bbas  101 aas 

 1100 bssy  0101 bssy 

In Table 1, two entries 0a and
1a are fix data, the item

101 aas  can be

precomputed in the program. Thus, the 2-point cyclic matrix method only uses 3

multiplications and 3 additions. If the matrices 









01

30

aa

aa
A is not 2-point cyclic matrix,

that product of the matrix A and B is given by

.
1001

1300

1

0

01

30

1

0








































baba

baba

b

b

aa

aa

y

y

(6)

Theorem 1 Let A be any nn cyclic matrix, where
21 nnn  and 1),(GCD 21 nn , then the

matrix A can be partitioned into a cyclic
11 nn  matrix, in which entries are

22 nn  submatrix.

It is similar to the proof by Winograd (1978). Using (4), by Theorem 1, the four-point cyclic

matrix can be partitioned as,

.

3

2

1

0

0123

3012

2301

1230

3

2

1

0

























































b

b

b

b

aaaa

aaaa

aaaa

aaaa

d

d

d

d

(7)

From (7), it can be rewritten as

,
1

0

01

10

1

0



























B

B

AA

AA

D

D

(8)

Regular Paper
Communications_of_the_CCISA

Vol._26__No._2__May._2020

8

where ,,,,
23

12

1

01

30

0

3

2

1

1

0

0 




































aa

aa
A

aa

aa
A

d

d
D

d

d
D . and ,

3

2

1

1

0

0 


















b

b
B

b

b
B In (8), it

can be used to reduce the multiplications by (5) form as follows:

   

   
,

010100

110100

1

0




































HF

GF

BAABBA

BAABBA

D

D

(9)

where 





















3

2

1

0

01

30

100)(
b

b

b

b

aa

aa
BBAF ,)(

3

2

2031

1320

110 





















b

b

aaaa

aaaa
BAAG and

.)(
1

0

2031

1320

010 





















b

b

aaaa

aaaa
BAAH The matrix F can be form by (6), and matrix G and

matrix H are form by (5) yields:















)()(

)()(

310201

313200

bbabba

bbabba
F

     

      













213203220

313203220

()

()

baaaabbaa

baaaabbaa
G

     

      













013201020

113201020

()

()

baaaabbaa

baaaabbaa
H

(10)

Obviously, the matrices F, G, and H are combination of the sets with element bi. Rewrite the

terms in ,200 bbs  ,,, 1001313002311 sasassasasbbs  ,324 bbs  and
105 bbs  as

follows:

,
3

2











s

s
F

  

  
,

())(

())(

21320420

31320420















baaaasaa

baaaasaa
G and

  

  
.

())(

())(

01320520

11320520















baaaasaa

baaaasaa
H

Next, the matrix G and matrix H are replaced with
131200 and aawaaw  . Thus, the matrix

G and H matrix can be given as















220

320

brr

brr
G

, and
021

121















brr

brr
H

Regular Paper
Communications_of_the_CCISA

Vol._26__No._2__May._2020

9

where
102501400 and ,, wwrswrswr  . Finally, the four-point cyclic matrix method can be

obtained as a new matrix form





































































0213

1212

2203

3202

3

2

1

0

1

0

brrs

brrs

brrs

brrs

d

d

d

d

HF

GF

D

D .

In the simplified case, the MixColumns transformation can be performed by 10

multiplications and 17 additions. Two items
131200 , aawaaw  and

102 wwr  are

known because the value
ia of the coefficients of polynomial A(x), can be precomputed in

the program. So that the method only uses 10 multiplications and 14 additions, that is

remarked as (10M, 14A).

Scheme 1. (10M, 14A)

1312001001313002

311200

,,,

,

aawaawsasassasas

bbsbbs





10210013200),()(wwrbbwrbbwr 

02133

12122

22031

32020

brrsd

brrsd

brrsd

brrsd









3.3 Reducing multiplications by multiply 2

The matrix product 

















1

0

01

30

00
b

b

aa

aa
BA can be further simplified by properties of

addition over GF(2
m
). Adding two entries of 02 10 ba and 02 00 ba are into matrix product

A0B0 as follows:

   

   
.

2

2

010100

130100

001001

101300

00 


























baabba

baabba

bababa

bababa
BA (11)

Regular Paper
Communications_of_the_CCISA

Vol._26__No._2__May._2020

10

In Scheme 2, the matrix F was replaced by (6). Now, the matrix F is replaced by (11) to

obtain the following matrix

    

    
.

)()(

)()(

201031200

313031200

31

20

01

30




































bbaabbbba

bbaabbbba

bb

bb

aa

aa
F

 

 
,

012

102

01100

10100




























stt

stt

stssa

stssa
F

where ,,,, 101300311200 aataatbbsbbs  and
2t  100 ssa  .

In Scheme 1, the two items
13002 sasas  and

10013 sasas  can be replaced as

,1022 stts  ,0123 stts  ,300 aat  ,101 aat  and  1002 ssat  for computing

MixColumns transformation. Consequently, in Scheme 1, each
ibr2
 term can be replaced

with lookup table method of
ii brbtc 2][ , namely, constant multiplication doesn’t require

computing multiplications as it did. It needs 256 bytes of memory, which is called Scheme 2.

Scheme 1 can further be rewritten as follows:

Scheme 2. (5M, 15A) (It needs 256 bytes as lookup table)

 

20001231022

1002101300

311200

,,

,,

,

aawsttsstts

ssataataat

bbsbbs







)(),(10013200 bbwrbbwr 

][

][

][

][

0133

1122

2031

3020

btcrsd

btcrsd

btcrsd

btcrsd









In Scheme 2, it uses only 5 multiplications and 18 additions with 256 bytes of memory

for matrix multiplication. Obviously, if the coefficients of the polynomial A(x) have the

equality a0+a3+a2+a1=1 in AES standard, then the property would make r2=w0+w1=1, based

on Scheme 2. Consequently, the 12 r doesn’t require lookup table computing as it did in

Scheme 2 (e.g.,
iii bbrbtc  1][2
), does not need memory used in embedded system, so that

the method can be rewritten as Scheme 3. In Scheme 3, there are three items

, and , , 101300200 aataataaw  which can be precomputed in the program, so that the

method only used 5 multiplications and 15 additions, namely, (5M, 15A).

Regular Paper
Communications_of_the_CCISA

Vol._26__No._2__May._2020

11

Scheme 3. (5M, 15A)

 

20001231022

1002101300

311200

,,

,,

,

aawsttsstts

ssataataat

bbsbbs







)(),(10013200 bbwrbbwr 

0133

1122

2031

3020

brsd

brsd

brsd

brsd









Note that the traditional matrix multiplication (16M, 12A), Scheme 1 and Scheme 2 can

be used for evaluating any diverse 44 circulant matrices in AES

MixColumns-InvMixColumns transformation. However, Scheme 3 is only for the polynomial

A(x) and A
-1

(x) that each of the sum of the coefficients is 1.

4. Finding a pair of the circulant matrices

In this section, the inverse polynomial A(x) is called polynomial E(x) for AES

InvMixColumns transformation. The modular product of E(x) and D(x) is presented as the

four-term polynomial B(x), defined as ,1 mod)()()(4  xxExDxB where the polynomial

01

2

2

3

3)(exexexexE  is the A
-1

(x) that might be expressed the cyclic matrix E form as

follows:

.

3

2

1

0

0123

3012

2301

1230

3

2

1

0

























































d

d

d

d

eeee

eeee

eeee

eeee

b

b

b

b

 (12)

Now, if matrix E is inverse matrix A, the product AE is equal to an identity matrix I as below:

.

1000

0100

0010

0001

0123

3012

2301

1230

0123

3012

2301

1230



























































eeee

eeee

eeee

eeee

aaaa

aaaa

aaaa

aaaa

 (13)

Regular Paper
Communications_of_the_CCISA

Vol._26__No._2__May._2020

12

Therefore, an efficient way to find the inverse of the matrix A is need, regardless of

whether the matrix A has a matrix inverse or not. The finding inverse of a 4 by 4 matrix E

procedure is called Find_inv_matrix().

Find_inv_matrix()

1 Initial value a0=0, a3=0, a2=0, a1=0.

2 a0←a0+1, if a0 > 255, go stop.

3 a3←a3+1, if a1 > 255, a3=1, go to step 2.

4 a2←a2+1, if a2 > 255, a2=1, go to step 3.

5 a1←a1+1, if a3 > 255, a1=1, go to step 4.

6 If (a0+a3+a2+a1) is not equal to r2, go to step 5.

7 Calculating the coefficients of the polynomial E.

)/ ,/,/,/(4

23,01

4

22,02

4

21,03

4

20,00 rMerMerMerMe 

8 Save
1230 ,,, aaaa and

1230 ,,, eeee . Go to step 5.

Here the sum of coefficients of the polynomial A(x) is the value of r2 range from 1 to 255.

The det(A) is determinant of the matrix A, and the adj(A) is the adjugate of matrix A. The

procedure to obtain all the coefficients of polynomial A(x) by computing XOR is equal to r2

and it needs to evaluate the determinant of the matrix A is not equal to zero. In above

procedure using the property  


4

1 2i i ra for testing all det(A) has property of det(A)= 4

2r , the

meaning is not required to compute det(A). The det(A)= 4

2r can also be proved as below:

,)det(3,012,021,030,00 MaMaMaMaA 

where

Now, the determinant of the matrix A is given as

4

1

4

2

4

3

4

0)det(aaaaA  . (14)

Regular Paper
Communications_of_the_CCISA

Vol._26__No._2__May._2020

13

Lemma 1 Let
iaaaa ,,,, 210  be elements in the finite field GF(p

m
),

jP

iaaa)(10  
jjj P

i

PP
aaa  10

.

The proof of Lemma 1 is given by Wicker (1995). It immediately follows from Lemma 1 that

(14) becomes

4

3210)()det(aaaaA  . (15)

Therefore,
23210 raaaa  is submitted into (15) then det(A)= 4

2r can be obtained. In

Find_inv_matrix() the calculation of det(A) and adj(A) are needed. In fact, det(A) and adj(A)

require more multiplications for evaluating Mij over GF(2
m

). The adjugate of A is defined as

follows:

,adj

)3,3(0)2,3(1)1,3(2)0,3(3

)3,2(3)2,2(0)1,2(1)0,2(2

)3,1(2)2,1(3)1,1(0)0,1(1

)3,0(1)2,0(2)1,0(3)0,0(0

TC

aaaa

aaaa

aaaa

aaaa





























































)3,3()2,3()1,3()0,3(

)3,2()2,2()1,2()0,2(

)3,1()2,1()1,1()0,1(

)3,0()2,0()1,0()0,0(

 where

MMMM

MMMM

MMMM

MMMM

C .

The minor of entry
ija is denoted by

ijM , where C is the matrix of cofactors, and C
T
 is

transpose of the matrix C.

)det(
 1

A

C
AE

T

  , (16)

where det(A) is determinant of the matrix A and

.

)3,3()3,2()3,1()3,0(

)2,3()2,2()2,1()2,0(

)1,3()1,2()1,1()1,0(

)0,3()0,2()0,1()0,0(





















MMMM

MMMM

MMMM

MMMM

CT

Regular Paper
Communications_of_the_CCISA

Vol._26__No._2__May._2020

14

The matrix C
T
 using first rows entries are transpose of the cofactor matrix A. the matrix E of

first row entries are given as

,/)(4

23100132023322110000 raaaaaaaaaaaaaaaaaae 

,/)(4

23130122012321110033 raaaaaaaaaaaaaaaaaae 

,/)(4

22130022312221100332 raaaaaaaaaaaaaaaaaae 

4

22033021312211003331 /)(raaaaaaaaaaaaaaaaaae  .

When the sum of coefficients of polynomial A(x) has a property 03210  aaaa , the

sum of coefficients of polynomial E(x) has a property 03210  eeee . So, if the sum of

first rows entries of the matrix A is ,2r (i.e.,
23210 raaaa ), then det(A)= 4

2r and the

sum of first rows entries in the matrix A
-1

 (or the matrix E) is 4

2

3

2 / rr . Since the sum of the

coefficients of the polynomial A(x) is r2 (i.e.,
23210 raaaa ), the sum of the

coefficients of the polynomial E(x) is 4

2

3

2 / rr . The matrix 4

2/ rCE T also has a cyclic matrix

property. Therefore, finding the inverse matrix procedure can obtain the Find_inv_matrix()

function. Now, the proposed procedure can cause an exhausting search for the sum of the

coefficients of the polynomial A(x) that has the property a0+a3+a2+a1=r2=1 and the

coefficients of the polynomial A(x)
-1

= E(x) also has the sum e0+e3+e2+e1=1. There are

16,516,604 a pair of entries that can be chosen to save into both of Table A and Table E. The

sizes of each table are 2
m
, where m-bit taken from a given key of size n-bit. For example,

taken m=4 bits from key length as direct addressing Table A and Table B listing in Table 2,

which the sizes of each table requires 2
m
4=66 Bytes to store in memory.

Table 2: The sum of the coefficients is just the value of the polynomial in r2=1.

Items
Table A a0+a3+a2+a1=r2=1 Table B e0+e3+e2+e1= 4

2

3

2 / rr =1

a0 a3 a2 a1 e0 e3 e2 e1

1 02 03 01 01 0e 0b 0d 09

2 02 0b 04 0c 7c 60 7a 67

3 03 02 0f 0f e2 b2 ee bf

4 03 04 05 03 7d 6f 7b 68

5 04 06 0d 0e 72 30 7b 38

6 04 07 03 01 68 7f 6f 79

7 05 09 0a 07 24 7c 2b 72

8 05 0a 01 0f 41 5f 45 5a

9 06 02 08 0d 7d 2c 73 23

10 06 03 08 0c 7d 2d 73 22

11 07 02 0d 09 93 d3 99 d8

12 07 03 0b 0e e6 b3 ea be

13 08 08 11 10 7a 21 63 39

Regular Paper
Communications_of_the_CCISA

Vol._26__No._2__May._2020

15

14 08 08 13 12 a0 ff bb e5

15 09 11 0a 13 05 19 06 1b

16 09 12 11 0b 38 79 20 60

If the range of r2 is between 1 and 255, then a pair of the entries can be found

25516,516,604=4,211,734,020 pairs, which the test run Find_inv_matrix() function. For

example, the value of r2 = 2, 3, 4, 5, 6, 7, 8 some of a pair of the entries are listed in Table 3.

Table 3: The value of r2=2, 3, 4, 5, 6, 7, 8.

Items
r2=a0+a3+a2+a1=2 e0+e3+e2+e1= 4

2

3

2 / rr =8d

a0 a3 a2 a1 e0 e3 e2 e1

1 1e 1e 20 22 98 32 1a 3d

2 1e 1e 21 23 14 56 5d 92

3 1e 1e 22 20 3d 1a 32 98

4 1e 1e 23 21 92 5d 56 14

Items
r2=a0+a3+a2+a1=3 e0+e3+e2+e1= 4

2

3

2 / rr =f6

a0 a3 a2 a1 e0 e3 e2 e1

1 1e 1e 20 23 54 63 fc 3d

2 1e 1e 21 22 82 72 78 7e

3 1e 1e 22 21 7e 78 72 82

4 1e 1e 23 20 3d fc 63 54

Items
r2=a0+a3+a2+a1=4 e0+e3+e2+e1= 4

2

3

2 / rr =cb

a0 a3 a2 a1 e0 e3 e2 e1

1 1e 1e 20 24 0b 6a a6 0c

2 1e 1e 21 25 2c 50 f5 42

3 1e 1e 22 26 6c 79 29 f7

4 1e 1e 23 27 d5 dd e4 27

Items
r2=a0+a3+a2+a1=5 e0+e3+e2+e1= 4

2

3

2 / rr =52

a0 a3 a2 a1 e0 e3 e2 e1

1 1e 1e 20 25 2c fe aa 2a

2 1e 1e 21 24 a1 57 93 37

3 1e 1e 22 27 c2 80 37 27

4 1e 1e 23 26 77 11 36 02

Items
r2=a0+a3+a2+a1=6 e0+e3+e2+e1= 4

2

3

2 / rr =7b

a0 a3 a2 a1 e0 e3 e2 e1

1 1e 1e 20 26 cc 47 E6 16

2 1e 1e 21 27 96 ab 25 63

3 1e 1e 22 24 43 26 40 5e

4 1e 1e 23 25 af 7c 35 9d

Regular Paper
Communications_of_the_CCISA

Vol._26__No._2__May._2020

16

Items
r2=a0+a3+a2+a1=7 e0+e3+e2+e1= 4

2

3

2 / rr =d1

a0 a3 a2 a1 e0 e3 e2 e1

1 1e 1e 20 27 85 90 ad 69

2 1e 1e 21 26 ff 35 fc e7

3 1e 1e 22 25 93 d7 ed 78

4 1e 1e 23 24 1f 84 4a 00

Items
r2=a0+a3+a2+a1=8 e0+e3+e2+e1= 4

2

3

2 / rr =e8

a0 a3 a2 a1 e0 e3 e2 e1

1 1e 1e 20 28 74 42 94 4a

2 1e 1e 21 29 f0 a0 0d b5

3 1e 1e 22 2a 9c 29 46 1b

4 1e 1e 23 2b bf 6c 78 43

5. Simulation results

The various methods of multiplication execute time running 10,000,000 times in Intel

Core i5-5200 and the results are given in Table 4.

Table 4: Different methods of multiplication executes time.

Finite field

Multipcation
Execution time Memory size

Lookup table 0.031 s 64 Kbytes

Russian Peasant 0.327 s 0 bytes

Horner’s rule 0.098 s 8 bytes

In Figure 2, the symbol “M” represents the multiplications and the symbol “A” represents the

additions. There are many methods for computing matrix multiplication, in which using the

multiplication of lookup table method for Scheme 3 is very fast when compared other

methods as shown in Table 5. However, lookup table method requires 64 Kbytes memory that

is not suitable for many embedded systems with limited resources and Scheme 3 is only used

to the sum of the coefficients of the polynomial A(x) and the polynomial E(x), that the both of

results is 1.

Regular Paper
Communications_of_the_CCISA

Vol._26__No._2__May._2020

17

Table 5: Computing time of MixColumns tansformation.

Multiplication

algorithms
(16M, 12A) Scheme 1 Scheme 2 Scheme 3

Reducing Percentage

(16M, 12A)- Scheme 3

/(16M, 12A)100%

Lookup table 1.93 1.42 0.96 0.92 52%

Horner's rule 6.35 4.21 2.41 2.3 63%

Russian Peasant 12.52 8.23 4.37 4.3 65%

Using the multiplication based on several algorithms in GF(2
m

) and Scheme 3 are for

evaluating encryption and decryption procedure running 1,000,000 times state with different

AES key lengths, where the state is 44 bytes. The keys with lengths 128, 192, 256 bits run

cipher-InCipher average execution time as shown in Figure 2. The trade-off between memory

size and speed performance for AES Cipher-InvCipher, would suggest that algorithms using

Horner’s rule method and Scheme 3 is better suitable for embedded system. The keys with

lengths 128, 192, 256 bits can be reduced ~60%, ~60%, and ~59%, respectively, with

Horner’s rule-based multiplication, faster than (16M, 12A) method.

Figure 2: AES execution time with the different key lengths

Finally, using Scheme 3 and Horner’s rule-based multiplication runs on STM32L476VG

discovery board with FPU ARM Cortex-M4 MCU 80 MHz. The encryption and decryption

procedure are running 10000 states, where a state is 44 bytes. The Cipher-InvCipher counts

the elapsed CPU cycles as shown in Table 6. It has to divide running cycles times with the

CPU clock frequency to obtain a value in seconds. As 32 bit value, this can overflow quite

fast at higher clock frequencies (i.e. 53.68 seconds at 80 MHz). Fortunately, testing execution

time for different keys lengths is not overflow 53.68 seconds. Using Horner’s rule-based

Regular Paper
Communications_of_the_CCISA

Vol._26__No._2__May._2020

18

multiplication and Scheme 3 for testing the keys with lengths 128, 192, 256 bits can be

reduced ~59.61%, ~59.72%, and ~59.83% respectively, faster than (16M, 12A) method. AES

execution time using Horner’s rule-based multiplication and Scheme 3 are measure of the

different key lengths as shown in Figure 3.

Table 6: Execution CPU cycles on STM32L476VG MCU.

AES

keys lengths

 (16M,12A) (Cyclic times)

Cipher InvCipher Ave. Cycle times

128 bits 423583003 422833181 423208092

192 bits 516154588 516009350 516081969

256 bits 609845413 608996752 609421083

AES

keys lengths

 Scheme 3 (Cyclic times)

Cipher InvCipher
Average

Cycle times

128 bits 171098400 170750823 170924612

192 bits 207938492 207746120 207842306

256 bits 245008423 244576184 244792304

Figure 3: AES execution time on STM32L476VG MCU

6. Conclusion

In summary, it is demonstrated herein that the computational complexity matrix

multiplication over GF(2
8
) can be minimized by 2-point cyclic convolution property. In

comparison for each of the schemes, Scheme 3 can be run on STM32L476VG discovery

board with more reduced ~60% time than (16M, 12A) method using in

Regular Paper
Communications_of_the_CCISA

Vol._26__No._2__May._2020

19

MixColumns-InvMixColumns step. In some instances, the sum of coefficients of the

polynomial is not 1 which can use for Scheme 1 and Scheme 2 (Note: If the memory is

enough on an embedded system). Scheme 1 and Scheme 2 have many a pair of the

coefficients than Scheme 3 for encryption and decryption. Nevertheless, Scheme 3 still has

16,516,604 a pair of entries that can be chosen to save into both of Table A and Table E. The

proposed method Figure 1 can be an extended procedure of AES with more variations in

circulant matrix for enhanced security of data transmissions. In the future, Scheme 3 may also

be used for designing VLSI circuits to save the amount of logic gates in diverse

MixColumns-InvMixColumns transformation.

References

[1] A. Biryukov, D. Khovratovich, “Related-Key cryptanalysis of the full AES-192 and

AES-256,” In: Matsui, M. (ed.) ASIACRYPT 2009 LNCS, (5912): 1-18

https://eprint.iacr.org/2009/317.pdf

[2] A. Maximov, “AES MixColumn with 92 XOR gates,” Cryptology ePrint Archive, Report

2019/833, https://eprint.iacr.org/2019/833, 2019.

[3] A. Stepanov, D. Rose, From mathematics to generic programming. Pearson Education,

New York, 3
st
 edn, 2015.

[4] B. Langenberg, H. Pham and R. Steinwandt, "Reducing the Cost of Implementing the

Advanced Encryption Standard as a Quantum Circuit," in IEEE Transactions on

Quantum Engineering, vol. 1, no. 2500112, pp. 1-12, 2020.

[5] B. Schneier, J. Kelsey, D. Whiting, D. Wagner, and C. Hall, “Twofish: a 128-Bit block

cipher” Available NIST's AES homepage, https://www.schneier.com/academic/

paperfiles/paper-twofish-paper.pdf, 1998

[6] C. H. Yang and Y. S. Chien, “FPGA Implementation and Design of a Hybrid Chaos-AES

Color Image Encryption Algorithm,” Symmetry, vol. 12, no. 2, 187(pp. 1-17), 2020..

[7] D. Augot, M. Finiasz, “Exhaustive search for small dimension recursive MDS diffusion

layers for block ciphers and hash functions,” IEEE Int. Conf. on Information Theory,

Turkey, July, pp. 1551-1555, 2013.

[8] D. Yin and Y. Gao, “A new construction of lightweight MDS matrices,” IEEE Int. Conf.

on Computer and communication, China, December, pp. 2560-2563, 2017.

[9] F. J. MacWilliams and N. J. Sloane, The theory of error-correcting codes: North-Holland,

1nd edn, 1978.

https://eprint.iacr.org/2009/317.pdf
https://eprint.iacr.org/2019/833
http://www.awprofessional.com/
http://www.awprofessional.com/
https://www.schneier.com/academic/paperfiles/paper-twofish-paper.pdf
https://www.schneier.com/academic/paperfiles/paper-twofish-paper.pdf

Regular Paper
Communications_of_the_CCISA

Vol._26__No._2__May._2020

20

[10] G. Murtaza and N. Ikram, “Direct exponent and scalar multiplication classes of an MDS

matrix,” IACR, http://eprint.iacr.org/2011/151, 2011.

[11] G. Selimis, A. Fournaris, and O. Koufopavlou, “Applying low power techniques in AES

MixColumn/InvMixColumn transformations,” IEEE Int. Conf, Electronics, Circuits and

Systems ICECS’06, France, December, pp. 10-13, 2006.

[12] I. Mahboob, “Lookup table based multiplication technique for GF(2
m
) with

cryptographic significance,” IEE Proc. Commun, vol. 152, no. 6, pp.965-974, 2005.

[13] J. Daemen, V. Rijmen, AES proposal: Rijndael document version 2, 1999.

[14] J. Lacan and J. Fimes, “Systematic MDS erasure codes based on vandermonde matrices,”

IEEE Trans. Commun. Lett., vol. 8, no. 9, pp. 570-572, 2004

[15] M. H. Jing and Z. H. Chen, “System for high-speed and diversified AES using FPGA,”

Microprocessors and Microsystems, vol. 31, no. 12, pp. 94–102, 2006.

[16] M. H. Jing, J. H. Chen, and Z. H. Chen, “Diversified Mixcolumn transformation of AES,”

Proc. Int. Conf. ICICS 2007, Singapore, December, pp. 10-13, 2007.

[17] P. Junod, S. Vaudenay, Perfect diffusion primitives for block ciphers. building efficient

MDS Matrices. Federalede Lausanne, Switzerland, 2004.

[18] S. Rizwana, B. Jagrutee, and B. Pragna, “Securing E-healthcare records on Cloud Using

Relevant data classification and Encryption,” International Journal Of Engineering And

Computer Science, vol. 6, no. 2, pp. 20215-20220, 2017

[19] W. S. Pienaar and M. Reza, “Survey on A Smart Health Monitoring System Based on

Context Awareness Sensing,” Communications_of_the_CCISA, vol. 25, no. 1, pp. 1-13,

2019.

[20] Y. Wang, L. Ni, C. H. Chang, and H. Yu, “DW-AES: A Domain-Wall Nanowire-Based

AES for high throughput and energy-efficient data encryption in Non-Volatile memory,”

IEEE T INF FOREN SEC, vol. 11, no. 11, pp. 2426-2440, 2016.

http://eprint.iacr.org/2011/151

