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Abstract 

Recently, AES is a commonly used encryption-decryption algorithm applied to wireless 

communication protocols. However, confidentiality and speed both associated with 

Cipher-InvCipher that are a very important issue in many current communication systems. In 

this paper, the key idea here is to propose a method with more variations in circulant matrix 

for enhancing security in AES MixColumns-InvMixColumns step. The paper is also to 

propose a method minimizes the number of multiplications for matrix multiplication 

theoretically based on two-point cyclic convolution properties of circulant matrix. The 

conventional 44 matrix multiplication typically needs 16 multiplications and 12 additions; 

however, the proposed method, described herein as Scheme 3, can reduce the matrix 

multiplications into 5 multiplications and 15 additions, which is used for encryption and 

decryption. Using Scheme 3 and Horner’s rule-based multiplication running on Intel CPU, the 

computational cost of the matrix multiplication can be reduced by ~63%. Furthermore, 

experiments using Scheme 3 along with Horner’s rule-based multiplication by means of AES 

keys lengths with 128, 192, 256 bits were tested by running on STM32L476VG MCU, result 

leads to the reduction of encryption and decryption time respectively by ~60%. Finally, the 

proposed procedure enables found many a pair of the circulant matrices for AES 

Cipher-InvCipher so that diverse of a pair of the circulant matrices can enhance security of the 

data transmission. 
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1. Introduction 

 

New features are being introduced and protecting data transmission is now more 

important than ever. Thus, an improvement to efficiently apply the Advanced Encryption 

Standard (AES) to communication systems, and cloud computing in healthcare systems [18] 

are important. The MixColumns-InvMixColumns transformation [13] is one of the functions 

in the Cipher-InvCipher. In AES, MixColumns transformation is a computationally expensive 

operation where the input matrix is multiplied with the MDS matrix. This transformation 

plays an important role with respect to the wide trail strategy in the cipher. In the early, the 

MDS matrix is also using in error correction code which authors by Lacan [14] and 

Macwillanms [9] have performed cyclic convolution of complex values with a hybrid 

transformation over finite fields. There exists several new research directions suggested by 

searching methods for finding MDS matrices in [7][8][16][17]. Moreover, in [10] has shown 

that the method can generate a random MDS matrix, and those techniques can be enhanced by 

dynamic MDS matrices. The diversity circulant matrices are used in the modern 

cryptographic method in AES. The computation of MDS matrix might be used in the 

encryption and decryption such as Rijndael method and Twofish method in [5]. However, 

these articles fail to mention to get inverse MDS matrices method. 

Furthermore, due to attacks [1] on AES-128 using known-key distinguishing attack with 

a computation complexity 2 method, this leads to opportunities to enhance security of data 

transmission. We propose using different coefficients of the polynomial A(x) and the inverse 

polynomial A(x), namely A
-1

(x). They are used in AES MixColumns-InvColumns by using 

some of the bits from the AES key as an index to find the variations of the coefficients of the 

polynomial. The method would be more difficult for attackers to locate and thus less prone to 

attacks in general. This paper also proposes an efficient method to find pairs consisting of the 

polynomial A(x) and A
-1

(x) by the Find_inv_matrix() procedure. Scheme 3, as descried in this 

paper, may be designed as a circuit in VLSI, see [2][4][6][15][11][20], which can be used to 

decrease logic gates. The matrix product operation can be used with distinct method of the 

multiplication in finite field see [3][12]. The method also can provide the security of the data 

transfer to the health monitoring system on ARM-based microcontrollers [18]. 

The remaining portion of this paper is organized as follows: Section 2 introduces 

enhanced security in AES MixColumns step. Section 3 discusses the multiplication in finite 

field concepts necessary for further developments, and also proposes methods to reduce the 

multiplication in matrix products for the AES encryption-decryption which these methods are 

called Scheme 1, Scheme 2, and Scheme 3, respectively. Section 4 proposes an efficient 

method that can be found in the entries at the first row vectors of the matrix A and the first 
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row vectors of the inverse matrix A for using in AES MixColumns-InvMixColumns step. 

Section 5 presents a performance analysis of AES Cipher-InvCipher on Intel CPU and 

STM32L476VG ARM-based MCU. Section 6 concludes the paper. 

 

 

2. Enhanced security in AES MixColumns step 
 

This paper mainly is not focused on fix polynomial a(x) in AES MixColumns 

transformation. We aim to enhance security of this AES algorithm with diversity 

MixColumns of the coefficients of polynomial that can be for increasing security. Since, if 

data is given in both plaintext and ciphertext, the determining the key would require an 

exhaustive search. However, Encrypting and decrypting data is must to know the Table A and 

Table B as shown in Figure 1. In other words, the key cannot be known from the plaintext and 

the ciphertext because the ciphertext and plaintext are obtained from AES standard 

MixColumns (02, 03, 01, 01) and InvMixColumns (oe, ob, od, 09) transformation. 

Furthermore, it might be sent the coefficient of the polynomial a(x) by elliptic curve 

cryptography of the ECDH algorithm to receiver. Receiver got the polynomial a(x) must to 

compute inverse the polynomial a(x) for decryption. So that it does not need to the Tabe A 

and Tabe B. 
 

 
Figure 1: Some bits of a key as index of coefficients 
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3. Fast matrix multiplication in AES Mixcolumns step  
 

A new method for computing of circulant matrix is described herein that is based on the 

2-point cyclic convolution matrix. This section consists of three subsections, in the first 

subsection describes different method of the multiplication over finite field for matrix 

multiplication that can be also applied to matrix operation. Besides, Scheme 1, which uses a 

two point cyclic matrix for reducing multiplication of the matrix product, and Scheme 2 uses 

2 multiplied by any element in GF(2
m

) which is zero for reducing a multiplication. The 

coefficients of the polynomial A(x) has the property 
23210 )( raaaa  , where aj is over 

GF(2
m

), which can use lookup table method for reducing 4 multiplications. Lastly, Scheme 3 

uses sum of the coefficients of the polynomial A(x) that has the properties 1)( 3210  aaaa , 

which reduce 4 multiplications in Scheme 3. 

 

3.1 Multiplication over finite field 

 

Let im

i i xaxa 





1

0
)(  and 






1

0
)(

m

i

i

i xbxb  be polynomial equation of degree m-1 in GF(2
m

), 

where ai, bi   {0, 1}. It is well know that finite field addition is defined as: 

 
),()()( xbxaxc   (1) 

 

Note that the symbol of “+” is XOR bitwise operation so it does not need extra defined 

function in C programming. Finite field multiplication is defined as: 

 
),( mod )()()( xfxbxaxc   (2) 

 

where the AES algorithm with multiplication is irreducible polynomial 

1)( 348  xxxxxf . In (2), the Russian Peasant method can be written as a function in C 

programming as follows: 
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Russian Peasant method 

unsigned char GFM(unsigned char a, unsigned char b){ 

unsigned char c = 0;  

for( int i = 0; i < 8; i++){ 

    if (b & 1) 

       c ^= a; 

    if (a & 0x80) 

       a = (a << 1) ^ 0x11b; 

    else 

       a <<= 1; 

  b >>= 1; 

  } 

return p; 

} 

 

In (2), the proposed multiplication can be evaluated by using Horner’s rule, according to the 

following recursive formula, ) )(mod)(mod))(mod((()( 45

2

67 BaxfBxaxfxBaxfBxaxc 

, )(mod  )(mod 01

2 BaxfBxaxfx   where B is represented as the polynomial b(x). 

Thus, an expression ))(mod( BaxfBxa ji   can be represented as a lookup table as following 

],[Bt ji aa ))(mod( BaxfBxa ji  , where )2(, GFaa ji  . Let ],[Bt ji aa  be c, the 2cxc 

)(mod xf  can be represented as ],[f 21

2

 mm cccxc , where )()(],[f xrecxxreccc jiji   and 

)(mod)( xfxxre m  is a remainder polynomial (e.g., re(x)= 134  xxx , binary 11001, Hex 

0x1b). Horner’s rule method is rewritten in C programming as shown below: 

 

Horner’s rule 

unsigned char f[4]; unsigned char Bt[4]; 

unsigned char GFM(unsigned char a, unsigned char b){ 

  unsigned char c; f[0] = 0; f[1] = 0x1b; f[2] = 0x36; f[3] = 0x2d; Bt[0] = 0; Bt[1] = b; 

  if (b & 0x80) 

    Bt[2] = (b << 1) ^ 0x1b; 

  else  

    Bt[2] = (b << 1); 

  Bt[3] = Bt[2] ^ b; 

  c= Bt[(a >> 6) & 0x3]; 

  c=(c << 2) ^ f[c >> 6] ^ Bt[(a >> 4) & 0x3]; 

  c=(c << 2) ^ f[c >> 6] ^ Bt[(a >> 2) & 0x3];  

  c=(c << 2) ^ f[c >> 6] ^ Bt[a & 0x3]; 

 return c; 

} 

 

As mentioned above, the two methods of multiplication can be used for making an 2D array 

GFMT[][] for lookup table method (i.e., GFMT[i][j]=GFM(i,j) where 0 i, j  255). An array 
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GFMT[][] needs 256*256=64K bytes for saving data. The lookup table method is shown as 

below: 

 

Lookup table method 

unsigned char GFM(unsigned char a, unsigned char b) 

{ 

 unsigned char c=0;  

 c=GTMT[a][b]; 

 return c; 

} 

 

3.2 Reducing multiplications in matrix multiplication 

 

The AES MixColumns transformation, the modular product of A(x) and B(x), is 

presented as the four-term polynomial D(x), defined as 

 
)(mod)()()( xTxBxAxD   (3) 

 

where ,1)( 4  xxT  
01

2

2

3

3)( axaxaxaxA  and
01

2

2

3

3)( bxbxbxbxB  , for )2(, m

ii GFba  . 

By (3), there is a circulant matrix form as: 

 

. 

3

2

1

0

0123

3012

2301

1230

3

2

1

0

























































b

b

b

b

aaaa

aaaa

aaaa

aaaa

d

d

d

d

 

(4) 

 

In (4), the matrix D is a product of matrices A and B, which requires 16 multiplications and 12 

additions (16M, 12A) listed below: 

 

(16M, 12A) 

302112033

332011022

322310011

312213000

babababad

babababad

babababad

babababad









 
 

   



 

Regular Paper 
Communications_of_the_CCISA 

Vol._26__No._2__May._2020 

 

 

7 

Using the two-point cyclic convolution matrix property for 22 matrices multiplication is 

given by: 

 

   

   
.   

y
 

010100

110100

1

0

01

10

1

0








































baabba

baabba

b

b

aa

aa

y
 (5) 

 

Hence, the method only requires 3 multiplications and 4 additions (3M, 3A) as shown in 

Table 1. 

 

Table 1: The two-point cyclic convolution method with (3M, 3A). 
 

 )( 1000 bbas    101 aas   

 1100 bssy    0101 bssy   

 

In Table 1, two entries  0a  and 
1a  are fix data, the item 

101 aas   can be 

precomputed in the program. Thus, the 2-point cyclic matrix method only uses 3 

multiplications and 3 additions. If the matrices 









01

30

aa

aa
A  is not 2-point cyclic matrix, 

that product of the matrix A and B is given by 

 

.
1001

1300

1

0

01

30

1

0








































baba

baba

b

b

aa

aa

y

y

 
(6) 

 

Theorem 1 Let A be any nn cyclic matrix, where 
21 nnn   and 1),(GCD 21 nn , then the 

matrix A can be partitioned into a cyclic 
11 nn   matrix, in which entries are 

22 nn   submatrix. 

It is similar to the proof by Winograd (1978). Using (4), by Theorem 1, the four-point cyclic 

matrix can be partitioned as, 

 

. 

3

2

1

0

0123

3012

2301

1230

3

2

1

0

























































b

b

b

b

aaaa

aaaa

aaaa

aaaa

d

d

d

d

 

(7) 

 

From (7), it can be rewritten as 

 

,
1

0

01

10

1

0



























B

B

AA

AA

D

D

 
(8) 
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where  ,,,,
23

12

1

01

30

0

3

2

1

1

0

0 




































aa

aa
A

aa

aa
A

d

d
D

d

d
D . and ,

3

2

1

1

0

0 


















b

b
B

b

b
B  In (8), it 

can be used to reduce the multiplications by (5) form as follows: 

 

   

   
,

010100

110100

1

0




































HF

GF

BAABBA

BAABBA

D

D

 

(9) 

 

where 





















3

2

1

0

01

30

100 )(
b

b

b

b

aa

aa
BBAF ,)(

3

2

2031

1320

110 





















b

b

aaaa

aaaa
BAAG and

.)( 
1

0

2031

1320

010 





















b

b

aaaa

aaaa
BAAH The matrix F can be form by (6), and matrix G and 

matrix H are form by (5) yields: 

 















)()(

)()(

310201

313200

bbabba

bbabba
F

 
     

      













213203220

313203220

()

()

baaaabbaa

baaaabbaa
G

 
     

      













013201020

113201020

()

()

baaaabbaa

baaaabbaa
H  

(10) 

 

Obviously, the matrices F, G, and H are combination of the sets with element bi. Rewrite the 

terms in ,200 bbs  ,,, 1001313002311 sasassasasbbs   ,324 bbs  and
105 bbs   as 

follows: 

 

,
3

2











s

s
F  

  

  
,

())(

())(

21320420

31320420















baaaasaa

baaaasaa
G  and 

  

  
.

())(

())(

01320520

11320520















baaaasaa

baaaasaa
H  

 

Next, the matrix G and matrix H are replaced with 
131200 and aawaaw  . Thus, the matrix 

G and H matrix can be given as 

 















220

320

brr

brr
G

 

, and
021

121















brr

brr
H

 

 



 

Regular Paper 
Communications_of_the_CCISA 

Vol._26__No._2__May._2020 

 

 

9 

where 
102501400 and ,, wwrswrswr  . Finally, the four-point cyclic matrix method can be 

obtained as a new matrix form 

 





































































0213

1212

2203

3202

3

2

1

0

1

0

brrs

brrs

brrs

brrs

d

d

d

d

HF

GF

D

D . 

 

In the simplified case, the MixColumns transformation can be performed by 10 

multiplications and 17 additions. Two items
131200  , aawaaw   and 

102 wwr   are 

known because the value 
ia  of the coefficients of polynomial A(x), can be precomputed in 

the program. So that the method only uses 10 multiplications and 14 additions, that is 

remarked as (10M, 14A). 

 

Scheme 1. (10M, 14A) 

1312001001313002

311200

,,,

,

aawaawsasassasas

bbsbbs




 

10210013200 ),()( wwrbbwrbbwr 
 

02133

12122

22031

32020

brrsd

brrsd

brrsd

brrsd









 
 

3.3 Reducing multiplications by multiply 2 

 

The matrix product 

















1

0

01

30

00
b

b

aa

aa
BA  can be further simplified by properties of 

addition over GF(2
m
). Adding two entries of 02 10 ba  and 02 00 ba  are into matrix product 

A0B0 as follows: 

   

   
. 

2

2

010100

130100

001001

101300

00 


























baabba

baabba

bababa

bababa
BA  (11) 
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In Scheme 2, the matrix F was replaced by (6). Now, the matrix F is replaced by (11) to 

obtain the following matrix 

 

    

    
.

)()(

)()(

201031200

313031200

31

20

01

30




































bbaabbbba

bbaabbbba

bb

bb

aa

aa
F  

 

 
,

012

102

01100

10100




























stt

stt

stssa

stssa
F  

 

where ,,,, 101300311200 aataatbbsbbs  and 
2t  100 ssa  . 

In Scheme 1, the two items 
13002 sasas   and 

10013 sasas   can be replaced as 

,1022 stts   ,0123 stts   ,300 aat   ,101 aat   and  1002 ssat   for computing 

MixColumns transformation. Consequently, in Scheme 1, each 
ibr2
 term can be replaced 

with lookup table method of 
ii brbtc 2][  , namely, constant multiplication doesn’t require 

computing multiplications as it did. It needs 256 bytes of memory, which is called Scheme 2. 

Scheme 1 can further be rewritten as follows: 

 

Scheme 2. (5M, 15A) (It needs 256 bytes as lookup table) 

 

20001231022

1002101300

311200

,,

,,

,

aawsttsstts

ssataataat

bbsbbs







 

)(),( 10013200 bbwrbbwr 
 

][

][

][

][

0133

1122

2031

3020

btcrsd

btcrsd

btcrsd

btcrsd









 

 

In Scheme 2, it uses only 5 multiplications and 18 additions with 256 bytes of memory 

for matrix multiplication. Obviously, if the coefficients of the polynomial A(x) have the 

equality a0+a3+a2+a1=1 in AES standard, then the property would make r2=w0+w1=1, based 

on Scheme 2. Consequently, the 12 r  doesn’t require lookup table computing as it did in 

Scheme 2 (e.g., 
iii bbrbtc  1][ 2
 ), does not need memory used in embedded system, so that 

the method can be rewritten as Scheme 3. In Scheme 3, there are three items 

,  and  ,  , 101300200 aataataaw   which can be precomputed in the program, so that the 

method only used 5 multiplications and 15 additions, namely, (5M, 15A). 
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Scheme 3. (5M, 15A) 

 

20001231022

1002101300

311200

,,

,,

,

aawsttsstts

ssataataat

bbsbbs







 

)(),( 10013200 bbwrbbwr 
 

0133

1122

2031

3020

brsd

brsd

brsd

brsd









 

 

Note that the traditional matrix multiplication (16M, 12A), Scheme 1 and Scheme 2 can 

be used for evaluating any diverse 44 circulant matrices in AES 

MixColumns-InvMixColumns transformation. However, Scheme 3 is only for the polynomial 

A(x) and A
-1

(x) that each of the sum of the coefficients is 1. 

 

 

4. Finding a pair of the circulant matrices 

 

In this section, the inverse polynomial A(x) is called polynomial E(x) for AES 

InvMixColumns transformation. The modular product of E(x) and D(x) is presented as the 

four-term polynomial B(x), defined as ,1  mod  )()()( 4  xxExDxB  where the polynomial 

01

2

2

3

3)( exexexexE   is the A
-1

(x) that might be expressed the cyclic matrix E form as 

follows: 

 

. 

3

2

1

0

0123

3012

2301

1230

3

2

1

0

























































d

d

d

d

eeee

eeee

eeee

eeee

b

b

b

b

 (12) 

 

Now, if matrix E is inverse matrix A, the product AE is equal to an identity matrix I as below: 

 

.

1000

0100

0010

0001

0123

3012

2301

1230

0123

3012

2301

1230



























































eeee

eeee

eeee

eeee

aaaa

aaaa

aaaa

aaaa

 (13) 
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Therefore, an efficient way to find the inverse of the matrix A is need, regardless of 

whether the matrix A has a matrix inverse or not. The finding inverse of a 4 by 4 matrix E 

procedure is called Find_inv_matrix(). 

 

Find_inv_matrix() 

1 Initial value a0=0, a3=0, a2=0, a1=0. 

2 a0←a0+1, if a0 > 255, go stop. 

3 a3←a3+1, if a1 > 255, a3=1, go to step 2. 

4 a2←a2+1, if a2 > 255, a2=1, go to step 3. 

5 a1←a1+1, if a3 > 255, a1=1, go to step 4. 

6 If (a0+a3+a2+a1) is not equal to r2, go to step 5. 

7 Calculating the coefficients of the polynomial E. 

 )/ ,/,/,/( 4

23,01

4

22,02

4

21,03

4

20,00 rMerMerMerMe   

8 Save 
1230 ,,, aaaa  and 

1230 ,,, eeee . Go to step 5. 

 

Here the sum of coefficients of the polynomial A(x) is the value of r2 range from 1 to 255. 

The det(A) is determinant of the matrix A, and the adj(A) is the adjugate of matrix A. The 

procedure to obtain all the coefficients of polynomial A(x) by computing XOR is equal to r2 

and it needs to evaluate the determinant of the matrix A is not equal to zero. In above 

procedure using the property  


4

1 2i i ra  for testing all det(A) has property of det(A)= 4

2r , the 

meaning is not required to compute det(A). The det(A)= 4

2r  can also be proved as below: 

 

,)det( 3,012,021,030,00 MaMaMaMaA   

 

where 

 

 

 

 

 

 

Now, the determinant of the matrix A is given as 

 
4

1

4

2

4

3

4

0)det( aaaaA  . (14) 
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Lemma 1 Let 
iaaaa ,,,, 210   be elements in the finite field GF(p

m
), 

jP

iaaa )( 10  
jjj P

i

PP
aaa  10

. 

 

The proof of Lemma 1 is given by Wicker (1995). It immediately follows from Lemma 1 that 

(14) becomes 

 
4

3210 )()det( aaaaA  . (15) 

 

Therefore, 
23210 raaaa   is submitted into (15) then det(A)= 4

2r  can be obtained. In 

Find_inv_matrix() the calculation of det(A) and adj(A) are needed. In fact, det(A) and adj(A) 

require more multiplications for evaluating Mij over GF(2
m

). The adjugate of A is defined as 

follows: 

 

,adj

)3,3(0)2,3(1)1,3(2)0,3(3

)3,2(3)2,2(0)1,2(1)0,2(2

)3,1(2)2,1(3)1,1(0)0,1(1

)3,0(1)2,0(2)1,0(3)0,0(0

TC

aaaa

aaaa

aaaa

aaaa









































 





















)3,3()2,3()1,3()0,3(

)3,2()2,2()1,2()0,2(

)3,1()2,1()1,1()0,1(

)3,0()2,0()1,0()0,0(

  where

MMMM

MMMM

MMMM

MMMM

C . 

 

The minor of entry 
ija  is denoted by

ijM , where C is the matrix of cofactors, and C
T
 is 

transpose of the matrix C. 

 

)det(
 1

A

C
AE

T

  , (16) 

 

where det(A) is determinant of the matrix A and 

 

.

)3,3()3,2()3,1()3,0(

)2,3()2,2()2,1()2,0(

)1,3()1,2()1,1()1,0(

)0,3()0,2()0,1()0,0(





















MMMM

MMMM

MMMM

MMMM

CT  
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The matrix C
T
 using first rows entries are transpose of the cofactor matrix A. the matrix E of 

first row entries are given as 

 

,/)( 4

23100132023322110000 raaaaaaaaaaaaaaaaaae   

,/)( 4

23130122012321110033 raaaaaaaaaaaaaaaaaae   

,/)( 4

22130022312221100332 raaaaaaaaaaaaaaaaaae   

4

22033021312211003331 /)( raaaaaaaaaaaaaaaaaae  . 

 

When the sum of coefficients of polynomial A(x) has a property 03210  aaaa , the 

sum of coefficients of polynomial E(x) has a property 03210  eeee . So, if the sum of 

first rows entries of the matrix A is ,2r  (i.e.,
23210 raaaa  ), then det(A)= 4

2r  and the 

sum of first rows entries in the matrix A
-1

 (or the matrix E) is 4

2

3

2 / rr . Since the sum of the 

coefficients of the polynomial A(x) is r2 (i.e., 
23210 raaaa  ), the sum of the 

coefficients of the polynomial E(x) is 4

2

3

2 / rr . The matrix 4

2/ rCE T  also has a cyclic matrix 

property. Therefore, finding the inverse matrix procedure can obtain the Find_inv_matrix() 

function. Now, the proposed procedure can cause an exhausting search for the sum of the 

coefficients of the polynomial A(x) that has the property a0+a3+a2+a1=r2=1 and the 

coefficients of the polynomial A(x)
-1 

= E(x) also has the sum e0+e3+e2+e1=1. There are 

16,516,604 a pair of entries that can be chosen to save into both of Table A and Table E. The 

sizes of each table are 2
m
, where m-bit taken from a given key of size n-bit. For example, 

taken m=4 bits from key length as direct addressing Table A and Table B listing in Table 2, 

which the sizes of each table requires 2
m
4=66 Bytes to store in memory. 

 

 

Table 2: The sum of the coefficients is just the value of the polynomial in r2=1. 

Items 
Table A a0+a3+a2+a1=r2=1   Table B e0+e3+e2+e1= 4

2

3

2 / rr =1 

a0 a3 a2 a1   e0 e3 e2 e1 

1 02 03 01 01   0e 0b 0d 09 

2 02 0b 04 0c   7c 60 7a 67 

3 03 02 0f 0f   e2 b2 ee bf 

4 03 04 05 03   7d 6f 7b 68 

5 04 06 0d 0e   72 30 7b 38 

6 04 07 03 01   68 7f 6f 79 

7 05 09 0a 07   24 7c 2b 72 

8 05 0a 01 0f   41 5f 45 5a 

9 06 02 08 0d   7d 2c 73 23 

10 06 03 08 0c   7d 2d 73 22 

11 07 02 0d 09   93 d3 99 d8 

12 07 03 0b 0e   e6 b3 ea be 

13 08 08 11 10   7a 21 63 39 
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14 08 08 13 12   a0 ff bb e5 

15 09 11 0a 13   05 19 06 1b 

16 09 12 11 0b   38 79 20 60 
 

If the range of r2 is between 1 and 255, then a pair of the entries can be found 

25516,516,604=4,211,734,020 pairs, which the test run Find_inv_matrix() function. For 

example, the value of r2 = 2, 3, 4, 5, 6, 7, 8 some of a pair of the entries are listed in Table 3.  

 

Table 3: The value of r2=2, 3, 4, 5, 6, 7, 8. 

Items 
r2=a0+a3+a2+a1=2  e0+e3+e2+e1= 4

2

3

2 / rr =8d 

a0 a3 a2 a1  e0 e3 e2 e1 

1 1e 1e 20 22  98 32 1a 3d 

2 1e 1e 21 23  14 56 5d 92 

3 1e 1e 22 20  3d 1a 32 98 

4 1e 1e 23 21  92 5d 56 14 

Items 
r2=a0+a3+a2+a1=3  e0+e3+e2+e1= 4

2

3

2 / rr =f6 

a0 a3 a2 a1  e0 e3 e2 e1 

1 1e 1e 20 23  54 63 fc 3d 

2 1e 1e 21 22  82 72 78 7e 

3 1e 1e 22 21  7e 78 72 82 

4 1e 1e 23 20  3d fc 63 54 

Items 
r2=a0+a3+a2+a1=4  e0+e3+e2+e1= 4

2

3

2 / rr =cb 

a0 a3 a2 a1  e0 e3 e2 e1 

1 1e 1e 20 24  0b 6a a6 0c 

2 1e 1e 21 25  2c 50 f5 42 

3 1e 1e 22 26  6c 79 29 f7 

4 1e 1e 23 27  d5 dd e4 27 

Items 
r2=a0+a3+a2+a1=5  e0+e3+e2+e1= 4

2

3

2 / rr =52 

a0 a3 a2 a1  e0 e3 e2 e1 

1 1e 1e 20 25  2c fe aa 2a 

2 1e 1e 21 24  a1 57 93 37 

3 1e 1e 22 27  c2 80 37 27 

4 1e 1e 23 26  77 11 36 02 

Items 
r2=a0+a3+a2+a1=6  e0+e3+e2+e1= 4

2

3

2 / rr =7b 

a0 a3 a2 a1  e0 e3 e2 e1 

1 1e 1e 20 26  cc 47 E6 16 

2 1e 1e 21 27  96 ab 25 63 

3 1e 1e 22 24  43 26 40 5e 

4 1e 1e 23 25  af 7c 35 9d 
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Items 
r2=a0+a3+a2+a1=7  e0+e3+e2+e1= 4

2

3

2 / rr =d1 

a0 a3 a2 a1  e0 e3 e2 e1 

1 1e 1e 20 27  85 90 ad 69 

2 1e 1e 21 26  ff 35 fc e7 

3 1e 1e 22 25  93 d7 ed 78 

4 1e 1e 23 24  1f 84 4a 00 

Items 
r2=a0+a3+a2+a1=8  e0+e3+e2+e1= 4

2

3

2 / rr =e8 

a0 a3 a2 a1  e0 e3 e2 e1 

1 1e 1e 20 28  74 42 94 4a 

2 1e 1e 21 29  f0 a0 0d b5 

3 1e 1e 22 2a  9c 29 46 1b 

4 1e 1e 23 2b  bf 6c 78 43 

 

 

5. Simulation results 
 

The various methods of multiplication execute time running 10,000,000 times in Intel 

Core i5-5200 and the results are given in Table 4. 

 

Table 4: Different methods of multiplication executes time. 

Finite field 

Multipcation 
Execution time Memory size 

Lookup table 0.031 s 64 Kbytes 

Russian Peasant 0.327 s 0 bytes 

Horner’s rule 0.098 s 8 bytes 

 

In Figure 2, the symbol “M” represents the multiplications and the symbol “A” represents the 

additions. There are many methods for computing matrix multiplication, in which using the 

multiplication of lookup table method for Scheme 3 is very fast when compared other 

methods as shown in Table 5. However, lookup table method requires 64 Kbytes memory that 

is not suitable for many embedded systems with limited resources and Scheme 3 is only used 

to the sum of the coefficients of the polynomial A(x) and the polynomial E(x), that the both of 

results is 1. 
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Table 5:  Computing time of MixColumns tansformation. 

Multiplication 

algorithms 
(16M, 12A) Scheme 1 Scheme 2 Scheme 3 

Reducing Percentage 

(16M, 12A)- Scheme 3 

/(16M, 12A)100% 

Lookup table 1.93 1.42 0.96 0.92 52% 

Horner's rule 6.35 4.21 2.41 2.3 63% 

Russian Peasant 12.52 8.23 4.37 4.3 65% 
 

Using the multiplication based on several algorithms in GF(2
m

) and Scheme 3 are for 

evaluating encryption and decryption procedure running 1,000,000 times state with different 

AES key lengths, where the state is 44 bytes. The keys with lengths 128, 192, 256 bits run 

cipher-InCipher average execution time as shown in Figure 2. The trade-off between memory 

size and speed performance for AES Cipher-InvCipher, would suggest that algorithms using 

Horner’s rule method and Scheme 3 is better suitable for embedded system. The keys with 

lengths 128, 192, 256 bits can be reduced ~60%, ~60%, and ~59%, respectively, with 

Horner’s rule-based multiplication, faster than (16M, 12A) method. 

 

 
Figure 2: AES execution time with the different key lengths 

 

Finally, using Scheme 3 and Horner’s rule-based multiplication runs on STM32L476VG 

discovery board with FPU ARM Cortex-M4 MCU 80 MHz. The encryption and decryption 

procedure are running 10000 states, where a state is 44 bytes. The Cipher-InvCipher counts 

the elapsed CPU cycles as shown in Table 6. It has to divide running cycles times with the 

CPU clock frequency to obtain a value in seconds. As 32 bit value, this can overflow quite 

fast at higher clock frequencies (i.e. 53.68 seconds at 80 MHz). Fortunately, testing execution 

time for different keys lengths is not overflow 53.68 seconds. Using Horner’s rule-based 
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multiplication and Scheme 3 for testing the keys with lengths 128, 192, 256 bits can be 

reduced ~59.61%, ~59.72%, and ~59.83% respectively, faster than (16M, 12A) method. AES 

execution time using Horner’s rule-based multiplication and Scheme 3 are measure of the 

different key lengths as shown in Figure 3. 

 

Table 6: Execution CPU cycles on STM32L476VG MCU. 

AES 

keys lengths 

   (16M,12A)                       (Cyclic times)                                                               

Cipher InvCipher Ave. Cycle times 

128 bits 423583003 422833181 423208092 

192 bits 516154588 516009350 516081969 

256 bits 609845413 608996752 609421083 

AES 

 

keys lengths 

    Scheme 3                       (Cyclic times)                                                               

Cipher InvCipher 
Average 

Cycle times 

128 bits 171098400 170750823 170924612 

192 bits 207938492 207746120 207842306 

256 bits 245008423 244576184 244792304 

 

 
Figure 3: AES execution time on STM32L476VG MCU 

 

 

6. Conclusion 

 

In summary, it is demonstrated herein that the computational complexity matrix 

multiplication over GF(2
8
) can be minimized by 2-point cyclic convolution property. In 

comparison for each of the schemes, Scheme 3 can be run on STM32L476VG discovery 

board with more reduced ~60% time than (16M, 12A) method using in 
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MixColumns-InvMixColumns step. In some instances, the sum of coefficients of the 

polynomial is not 1 which can use for Scheme 1 and Scheme 2 (Note: If the memory is 

enough on an embedded system). Scheme 1 and Scheme 2 have many a pair of the 

coefficients than Scheme 3 for encryption and decryption. Nevertheless, Scheme 3 still has 

16,516,604 a pair of entries that can be chosen to save into both of Table A and Table E. The 

proposed method Figure 1 can be an extended procedure of AES with more variations in 

circulant matrix for enhanced security of data transmissions. In the future, Scheme 3 may also 

be used for designing VLSI circuits to save the amount of logic gates in diverse 

MixColumns-InvMixColumns transformation. 
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