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Abstract 

We propose a novel solution for verifiable data streaming via noncryptographic approach 

(NAVDS). Our proposed NAVDS is featured by its execution performance, compared to the 

existing solutions with significant computation burden on both client and server sides. 
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1. Introduction 

 

The verifiable data outsourcing has always been an active research issues. In the 

conventional setting of verifiable data outsourcing, the client owns the entire set of data, and 

will be able to verify the query answer integrity after the data outosourcing. Nevertheless, in 

the big data era, the data of overwhelmingly high volume come with extremely high speed. 

This makes the client unable to keep all of the data in the local storage and then outsource 

them to the remote server. Therefore, a problem of verifiable computation in a steaming 

setting, where the client (verifier) outsources the numeric data in a streaming fashion to an 

untrusted server (prover), is considered in this paper. Such a verifiable data streaming, where 

the operations APPEND, QUERY, and VERIFY are available to use, is featured by the client 

being only able to ``see'' the current element; the previous elements cannot be stored and the 

future elements are unpredictable. Despite the above constraint, the client is allowed to keep a 

small-sized local state. Under this setting, when the client issues a point query (e.g., retrieving 

a particular data element) and receives the query result from the server, the cached state serves 

to verify the query result correctness. A conceptual illustration of verifiable data streaming is 

shown in Fig. 1, where the client can keep a local state for elements 2, 3, 4, 4, 2, 9 while the 

server may maintain a search structure (e.g., B-tree) for answering queries. In this paper, we 

develop a novel and practical technique for verifiable data streaming with the particular focus 

on the verifiable point query. 
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Figure 1: Conceptual illustration of verifiable data streaming and our solution. 

 

Ordered neighborhood chain or Merkle tree [6] are common approaches to the 

conventional verifiable data outsourcing. In essence, the client keeps only the partial 

information about the chain or tree, which can be used for the verification purpose. 

Unfortunately, the existing techniques cannot apply to the streaming setting because they 

require the client to own the entire data. Hence, the primary challenge of verifiable data 

streaming lies in the design of the protocol with the update functionality. 

 

 

2. Related Work 

 

2.1 Verifiable Data Streaming 

 

Verifiable data streaming has attracted the research attention recently. In particular, 

Schroder and Schroder [10] initiated the study of verifiable data streaming, where a stream s1, 

s2, … , of elements is processed and then outsourced to the server. Schroder and Schroder 

propose to use Chameleon Authentication Tree (CAT) to retrieve si (point query), 𝑖 ∈

[1, 𝛼 − 1] , at the 𝛼-th time unit. In essence, the client in CAT still builds up a Merkle tree 

for the data stream but with the conventional hash function replaced by Chameleon hash 

function. The ordinary CAT method suffers from the limitation of bounded (or say, predefined) 

stream elements. The VeriStream [11] solution, where the CAT is used with a minor twist, is 

then proposed for the unbounded stream elements. Kim and Jeong [3] propose to employ 

ordinary binary hash tree to handle verifiable data streaming. Their idea is to store the data 
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elements in both internal and leaf nodes of the binary hash tree, in contrast to the data 

elements stored only in leaf nodes in CAT. Kim and Jeong claim to achieve O(1) complexity 

for the storage, computation, and communications, but fail to prove it formally.  

Yu [12] constructs an updatable Merkle tree by taking advantage of the conventional 

hash function replaced by simple arithmetic operations. In essence, in Yu's solution, once the 

new data element comes, the tree roots on both client and server sides will updated locally 

and immediately, except that the client can do the update in plaintext while the server can only 

do the update blindly (all of the data elements are encrypted homomorphically [2, 7]). Under 

the same setting, Papamanthou et al. [8] proposed Generalized Merkle Tree (GMT) to secure 

both the point and range queries. GMT can be thought of as an algebraic hash tree, with the 

hash function replaced by more complicated vector operations over the lattice to accomplish 

the local update of the client's state. Despite the performance improvement of GMT in [9], 

GMT still suffers from the performance inefficiency due to the intensive use of lattice-based 

hash function and projection function. Very recently, a nearly optimal solution [5] has been 

proposed; both the storage and communication reach O(1) overhead. The solution in [5] uses 

cryptographic accumulator to store the revoked data elements. The client is then able to check 

whether the data element in the query response has been revoked previously. 

 

2.2 Research Challenge 

 

All of the existing solutions for verifiable data streaming suffer from performance issue. 

In particular, all of the solutions exploit the heavyweight cryptographic primitives such as 

Chameleon hash function, homomorphic encryption, and cryptographic accumulator. The 

common characteristic of these cryptographic primitives is the use of time-consuming 

modular exponentiation. As a consequence, we are looking for a lightweight solution for 

verifiable data streaming. 

 

 

3. Proposed Method 

 

 Here, we propose a solution for verifiable data streaming via noncryptographic approach 

(NAVDS). The rationale behind NAVDS is the dummy query; more specifically, the client 

stores a small set of data elements in the local memory. The client occasionally issues the 

dummy point query to the server. Since the client will know the true answer of the dummy 

query from its local memory, when the server returns the falsified query response, the client 

may find the incorrect result. 
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 There are a number of technical questions and concerns remained in the design and 

implementation of NAVDS; first, in the ideal case, the data elements in the client's local 

memory should be uniformly sampled from the data stream. Otherwise, for the positions more 

unlikely to be sampled, the server would be able to return the falsified answers of those 

positions without being detected. Second, the effectiveness of such dummy query-based 

solution relies on the fact that the server cannot differentiate dummy queries (i.e., the queries 

that the client knows the answers) from genuine queries (i.e., the queries that the client does 

not know the answer). Thus, it is necessary to make the time and queried positions of dummy 

and genuine queries follow the same distribution. Third, since the dummy queries will be 

generated, some of the genuine queries will be delayed. The delay for the genuine queries 

should be minimized. 

 

3.1 Protocol Description 

 

 The APPEND operation for the client is shown in Fig. 2. Our proposed NAVDS 

maintains two buffers, M1 and M2 (shown in Fig. 3 and Fig. 4), which are used for caching the 

chosen data elements and caching the generated queries, respectively. In particular, our 

proposed NAVDS answers the first concern by taking advantage of reservoir sampling 

technique (Lines 1-6). In essence, the reservoir sampling is used to perform the uniform 

sampling over an infinite data stream. In addition, our design answers the second concern and 

ensures that all queries (both dummy and genuine) follow exponential distribution by keeping 

a buffer M2 (Lines 7-9). We also assume a virtual proxy in the client, collecting dummy and 

genuine queries. This proxy will be formulated as M/G/1 queue, and perform the queueing 

analysis over the proxy to derive the query delay. 
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Figure 2: APPEND subroutine. 

 

 

Figure 3: M1 usage. 
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Figure 4: M2 usage. 

 

4. Conclusion 

 

 We propose a novel solution for verifiable data streaming via noncryptographic approach 

(NAVDS). Since our NAVDS does not involve any heavyweight cryptographic operations, it 

can achieve very high data rate and makes it very practical to be implemented. 
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