

Regular Paper
Communications_of_the_CCISA

Vol._26__No._1__Feb._2020

1

Verifiable Data Streaming via Noncryptographic Approach

Fan-Hsun Tseng
 1*

, Fan-Yi Kao
 2

1, 2
Department of Technology Application and Human Resource Development, National

Taiwan Normal University
1

fhtseng@ntnu.edu.tw、2
kao660021@gmail.com

Abstract

We propose a novel solution for verifiable data streaming via noncryptographic approach

(NAVDS). Our proposed NAVDS is featured by its execution performance, compared to the

existing solutions with significant computation burden on both client and server sides.

Keywords: Noncryptographic, Verifiable Data Streaming, Verifiable Data outsourcing

1. Introduction

The verifiable data outsourcing has always been an active research issues. In the

conventional setting of verifiable data outsourcing, the client owns the entire set of data, and

will be able to verify the query answer integrity after the data outosourcing. Nevertheless, in

the big data era, the data of overwhelmingly high volume come with extremely high speed.

This makes the client unable to keep all of the data in the local storage and then outsource

them to the remote server. Therefore, a problem of verifiable computation in a steaming

setting, where the client (verifier) outsources the numeric data in a streaming fashion to an

untrusted server (prover), is considered in this paper. Such a verifiable data streaming, where

the operations APPEND, QUERY, and VERIFY are available to use, is featured by the client

being only able to ``see'' the current element; the previous elements cannot be stored and the

future elements are unpredictable. Despite the above constraint, the client is allowed to keep a

small-sized local state. Under this setting, when the client issues a point query (e.g., retrieving

a particular data element) and receives the query result from the server, the cached state serves

to verify the query result correctness. A conceptual illustration of verifiable data streaming is

shown in Fig. 1, where the client can keep a local state for elements 2, 3, 4, 4, 2, 9 while the

server may maintain a search structure (e.g., B-tree) for answering queries. In this paper, we

develop a novel and practical technique for verifiable data streaming with the particular focus

on the verifiable point query.

*
 Author (Corresponding author.)

Regular Paper
Communications_of_the_CCISA

Vol._26__No._1__Feb._2020

2

Figure 1: Conceptual illustration of verifiable data streaming and our solution.

Ordered neighborhood chain or Merkle tree [6] are common approaches to the

conventional verifiable data outsourcing. In essence, the client keeps only the partial

information about the chain or tree, which can be used for the verification purpose.

Unfortunately, the existing techniques cannot apply to the streaming setting because they

require the client to own the entire data. Hence, the primary challenge of verifiable data

streaming lies in the design of the protocol with the update functionality.

2. Related Work

2.1 Verifiable Data Streaming

Verifiable data streaming has attracted the research attention recently. In particular,

Schroder and Schroder [10] initiated the study of verifiable data streaming, where a stream s1,

s2, … , of elements is processed and then outsourced to the server. Schroder and Schroder

propose to use Chameleon Authentication Tree (CAT) to retrieve si (point query), 𝑖 ∈

[1, 𝛼 − 1] , at the 𝛼-th time unit. In essence, the client in CAT still builds up a Merkle tree

for the data stream but with the conventional hash function replaced by Chameleon hash

function. The ordinary CAT method suffers from the limitation of bounded (or say, predefined)

stream elements. The VeriStream [11] solution, where the CAT is used with a minor twist, is

then proposed for the unbounded stream elements. Kim and Jeong [3] propose to employ

ordinary binary hash tree to handle verifiable data streaming. Their idea is to store the data

…, 1, 4, 5, 6, 2, 3, 4, 4, 2, 9

Client

2, 2, 3, 4, 4, 9

Server

Client can only see

this element at current time

these elements hasn’t arrived,

and they are unpredictable for client

these elements has been outsourced,

and client cannot see previous elements

Regular Paper
Communications_of_the_CCISA

Vol._26__No._1__Feb._2020

3

elements in both internal and leaf nodes of the binary hash tree, in contrast to the data

elements stored only in leaf nodes in CAT. Kim and Jeong claim to achieve O(1) complexity

for the storage, computation, and communications, but fail to prove it formally.

Yu [12] constructs an updatable Merkle tree by taking advantage of the conventional

hash function replaced by simple arithmetic operations. In essence, in Yu's solution, once the

new data element comes, the tree roots on both client and server sides will updated locally

and immediately, except that the client can do the update in plaintext while the server can only

do the update blindly (all of the data elements are encrypted homomorphically [2, 7]). Under

the same setting, Papamanthou et al. [8] proposed Generalized Merkle Tree (GMT) to secure

both the point and range queries. GMT can be thought of as an algebraic hash tree, with the

hash function replaced by more complicated vector operations over the lattice to accomplish

the local update of the client's state. Despite the performance improvement of GMT in [9],

GMT still suffers from the performance inefficiency due to the intensive use of lattice-based

hash function and projection function. Very recently, a nearly optimal solution [5] has been

proposed; both the storage and communication reach O(1) overhead. The solution in [5] uses

cryptographic accumulator to store the revoked data elements. The client is then able to check

whether the data element in the query response has been revoked previously.

2.2 Research Challenge

All of the existing solutions for verifiable data streaming suffer from performance issue.

In particular, all of the solutions exploit the heavyweight cryptographic primitives such as

Chameleon hash function, homomorphic encryption, and cryptographic accumulator. The

common characteristic of these cryptographic primitives is the use of time-consuming

modular exponentiation. As a consequence, we are looking for a lightweight solution for

verifiable data streaming.

3. Proposed Method

 Here, we propose a solution for verifiable data streaming via noncryptographic approach

(NAVDS). The rationale behind NAVDS is the dummy query; more specifically, the client

stores a small set of data elements in the local memory. The client occasionally issues the

dummy point query to the server. Since the client will know the true answer of the dummy

query from its local memory, when the server returns the falsified query response, the client

may find the incorrect result.

Regular Paper
Communications_of_the_CCISA

Vol._26__No._1__Feb._2020

4

 There are a number of technical questions and concerns remained in the design and

implementation of NAVDS; first, in the ideal case, the data elements in the client's local

memory should be uniformly sampled from the data stream. Otherwise, for the positions more

unlikely to be sampled, the server would be able to return the falsified answers of those

positions without being detected. Second, the effectiveness of such dummy query-based

solution relies on the fact that the server cannot differentiate dummy queries (i.e., the queries

that the client knows the answers) from genuine queries (i.e., the queries that the client does

not know the answer). Thus, it is necessary to make the time and queried positions of dummy

and genuine queries follow the same distribution. Third, since the dummy queries will be

generated, some of the genuine queries will be delayed. The delay for the genuine queries

should be minimized.

3.1 Protocol Description

 The APPEND operation for the client is shown in Fig. 2. Our proposed NAVDS

maintains two buffers, M1 and M2 (shown in Fig. 3 and Fig. 4), which are used for caching the

chosen data elements and caching the generated queries, respectively. In particular, our

proposed NAVDS answers the first concern by taking advantage of reservoir sampling

technique (Lines 1-6). In essence, the reservoir sampling is used to perform the uniform

sampling over an infinite data stream. In addition, our design answers the second concern and

ensures that all queries (both dummy and genuine) follow exponential distribution by keeping

a buffer M2 (Lines 7-9). We also assume a virtual proxy in the client, collecting dummy and

genuine queries. This proxy will be formulated as M/G/1 queue, and perform the queueing

analysis over the proxy to derive the query delay.

Regular Paper
Communications_of_the_CCISA

Vol._26__No._1__Feb._2020

5

Figure 2: APPEND subroutine.

Figure 3: M1 usage.

…, 1, 4, 5, 6, 2, 3, 4, 4, 2, 9

Client

2, 2, 3, 4, 4, 9

Server

(2, 2), (6, 2) M1

query 6th element

6th element is 9
detect attacks

Regular Paper
Communications_of_the_CCISA

Vol._26__No._1__Feb._2020

6

Figure 4: M2 usage.

4. Conclusion

 We propose a novel solution for verifiable data streaming via noncryptographic approach

(NAVDS). Since our NAVDS does not involve any heavyweight cryptographic operations, it

can achieve very high data rate and makes it very practical to be implemented.

…, 1, 4, 5, 6, 2, 3, 4, 4, 2, 9

Client

2, 2, 3, 4, 4, 9

Server

(2, 1), (6, 2) M2

query 1st element

query 2nd element

Regular Paper
Communications_of_the_CCISA

Vol._26__No._1__Feb._2020

7

References

[1] C. Gentry, ”Fully homomorphic encryption using ideal lattices,” ACM STOC, 2009.

[2] C. Papamanthou, E. Shi, R. Tamassia, and K. Yi, “Streaming authenticated data

structures,“ EUROCRYPT, 2013.

[3] C.-M. Yu, “Lightweight Streaming Authenticated Data Structures,” ACM CCS, 2015.

[4] D. Schröder and H. Schröder, “Verifiable data streaming,” ACM CCS, 2012.

[5] D. Schröder and M. Simkin, “VeriStream - a framework for verifiable data streaming,”

FC, 2015.

[6] H. Krawczyk and T. Rabin, ”Chameleon signatures,” NDSS, 2000.

[7] J. Krupp, D. Schröder, M. Simkin, D. Fiore, G. Ateniese, and S. Nuernberger, “Nearly

optimal verifiable data streaming,” PKC, 2016.

[8] K. S. Kim and I. R. Jeong, “Efficient verifiable data streaming,” Security and

Communication Networks, vol. 8, no. 18, pp. 4013-4018, December 2015.

[9] P. Paillier, “Public-key cryptosystems based on composite degree residuosity classes,”

EUROCRYPT, 1999.

[10] R. C. Merkle, ”A digital signature based on a conventional encryption function,”

CRYPTO, 1988.

[11] S. Benabbas, R. Gennaro, and Y. Vahlis, “Verifiable delegation of computation over large

datasets,” CRYPTO, 2011.

[12] Y. Qian, Y. Zhang, X. Chen, C. Papamanthou, “Streaming authenticated data structures:

abstraction and implementation,” ACM CCSW, 2014.

