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Abstract. 

 AppBeach standing on App Behavior Checker is a new service to reconstruct and report 

behaviors of iOS mobile applications, using static binary analysis to reveal embedded 

functions within the executables. AppBeach adopts a distributed algorithm on call sequence 

counting via the hadoop framework, achieving a scalable static syntax analysis on executables 

of modern apps. The main idea is syntactically counting call sequences that are embedded in 

iOS executable. This is done by distributing routines to mappers with the assembly tool that 

resolves explicit and implicit system method calls that are embedded in the iOS executables. 

The reducer then collects the counting from mappers to characterize the behaviors of apps. 

We learn patterns of malicious behaviors from the difference of pairs of normal and malicious 

apps, and report the probability of potential behaviors of commercial apps by matching these 

patterns to their call sequence counts. 

 

 

1. Introduction 

As mobile devices and their applications become increasingly popular, security of 

mobile applications becomes the stunning block; users have to face threats of improper uses 

of their private information that can result in malicious attacks [15]. It has been shown that 

solely relying on license agreements has limited protection. One famous example is the social 

app Path [16] that retrieves and transmits iOS users address books to external devices without 

any notification. In addition to malicious apps, many suspicious behaviors are actually 

embedded in the third part library that are invoked neither with developer's intention nor with 

user's awareness. It is hence essential to develop a systematic approach to analyze mobile 

applications to discover potential behaviors of these apps, not only from the descriptions but 

from the applications themselves. 
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We have proposed in [12] a static binary analysis on iOS executables. We realize the 

techniques in this presented tool AppBeach [14], providing a systematic service to analyze 

and characterize mobile applications based on direct analysis on their executables. The 

analysis is particularly useful to detect sensitive behaviors of apps that are embedded in their 

executable but may or may not appear to users. Our main idea is resolving and counting 

system call (i.e., objc_msgSend) sequences within the assembly of the app executable. This 

information is particularly essential to iOS application users since many functions can be 

called without consent dialogs, i.e., runtime permission dialogs. Users may not be aware of 

their sensitive data have been accessed in many cases. 

 

2. Related Work 

To analyze mobile application binaries, both static and dynamic analysis techniques have 

been proposed [12][3][10][2]. Dynamic analysis primarily relies on observing (systematic) 

executions of the binary on (predefined) sets of runs. Dynamic binary instrumentation 

frameworks such as Valgrind [8] and Pin [4] facilitate such tool development. Most of these 

techniques and tools work on x86 instructions (rather than Arm/Darwin instructions) and 

cannot be applied directly to iOS applications. Previous work on android mobile applications 

mainly adopts dynamic analysis, given that the android platform provides well simulation of 

the binaries. For instance, Barbic et al. [1] draw system call dependency graphs that trace 

program executions, log system calls, and trace how parameters propagate, and finally 

compute the control flow of their behaviors. Zhou et al. [13] propose permission-based 

behavior footprints to discover malicious behaviors that collect permissions requested by 

known malware graphs. However, there is no such simulation tool support to public iOS 

applications. Apple provides an emulator under the XCode develop environment that works 

for x86 executions. The simulation requires recompiled applications with source codes to be 

executed. That is to say, the simulation tool cannot be used to analyze apps (no source code 

available) that are directly downloaded from Apple App Store. Another challenge of dynamic 

analysis is to achieve high coverage of executions. Automatic test generation techniques have 

been proposed to address the issue.  

Static analysis on the other hand provides a direct analysis on source codes or binaries 

without executions. Mann et al. [7] adopt static analysis to detect privacy leaks in Android 

applications. They identified private information sources such as user’s location, contacts, 

calendar events, and network communications. They label the parameters with security levels. 

Variables associated with personal data are given high security levels to restrict unauthorized 

methods to access. Egele et al. [3] present PiOS, the first static binary analysis tool for 

detecting privacy leaks in iOS applications. Similar to our tool, PiOS decrypts and analyzes 
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binaries of iOS applications directly. They present set of techniques that can be used to build 

control flow graphs of system calls of the binaries. This is done by conducting data flow 

analysis on assembly codes with additional information in their head files. Based on the flow, 

they check whether applications contain suspicious flaws for privacy leaks. PiOS parses the 

structure of the assembly to discover instructions in the execution order, showing the 

feasibility of static binary analysis on iOS applications. Compared to PiOS, we adopt a light 

way analysis on counting system call sequences that are embedded in the executable in 

syntactic order. We trade off precision with performance. Werthmann et al. [11] present 

PSiOS on the other hand, using application framework to protect privacy by enforcing the 

behaviors of iOS applications under customized strategies. Yu et al. [12] propose static binary 

analysis to resolve system call functions that are invoked by the executable. The detection is 

based on system call counting, showing a light way static analysis with efficiency.  

We adopt static binary analysis [12] with extension to call sequence counting in this 

work. Our static analysis takes advantage of soundness by analyzing source codes without 

actually executing them. We perform the analysis on the executable binaries to identify all 

system functions that have been invoked. The objective of this work is to present a new tool 

AppBeach that features an effective static approach to analyze behaviors of iOS apps. We 

adopt static binary analysis to count call sequence appearance from binaries. Unlike previous 

work on analyzing control flow graphs [3] and using predefined frames to enforce privacy 

policies [11], we characterize apps via the list of call sequence counts. Livshits and Jung [6] 

conduct binary analysis on finding proper placements of consent dialogs to improve privacy 

protection. We directly discover sensitive behaviors from binaries. We report our analysis 

online against thousands of popular mobile applications and show that the characterization on 

call sequence counts is sufficient to discover the behaviors embedded in executable in many 

cases. 

 

3. AppBeach 

The architecture of our tool AppBeach is shown in Figure 2. We first extract decrypted 

assembly of apps from jailbroken devices with mac tools. The step is similar to the techniques 

presented in [12]. We then dump all the methods and classes that are resolved by the assembly 

tool IDA Pro [5]. We then count appearances of classes and methods in a syntactic order as a 

syntax characterization of functions invoked by the executable. To achieve scalability, the 

counting is done in a distributed fashion via the Hadoop MapReduce framework. One 

extension of AppBeach [12] is counting call sequences instead of counting single calls 

(1-sequence in this context). Since sensitive behaviors of applications are actually carried out 

by executing a sequence of system calls, these calls must be invoked in the right order to 
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bring out the behaviors correctly. For instance, to upload user's GPS location to an external 

device, an app has to access the GPS location before sending the GPS locations outward the 

device. In other words, if the app sends a message outward before it accesses the location, the 

information sent could be null or invalid. Unlike PiOS that builds control flow graphs, we 

present a light static analysis on counting call sequence in a syntactic order. 

To count n-sequence calls, the mapper accumulates the call sequence and does not write 

the appearance to dataset (that is later summarized by the reducer) until n calls have been 

collected. That is to say, the modified map routine keeps call sequences (instead of a single 

call) as keys. After that, the mapper reads and shifts one call at a time to add the next 

n-sequence. Below it shows part of the code segment of mapper to collect n-sequence call 

where n is equal to windowSize. 

 

 

The reducer then counts call sequences by accumulating pairs with the same key. The result is 

the list of n-sequence call counts. For instance, an example of 3-sequence call counts to 

access user events consists of accessing the date (in NSDate class), calendar (in NSCalendar 

class) and event (in EKevent class). The count indicates the number of appearances of such 

call sequence in the executable. 

 

NSDate EKReminder EKEvent: 2 

EKReminder EKEvent NSDate : 4 

EKEventStore NSCalendar NSDateComponents : 5 

while (tokenizer.hasMoreTokens()) { 

sequence.add(tokenizer.nextToken()); 

if(sequence.size == windowsSize){ 

String addWord=""; 

  for(String w:sequence){ 

   addWord+=w; 

  } 

  word.set(addWord); 

  output.collect(word, one); 

  reporter.incrCounter(Counters.INPUT_WORDS, 1); 

  sequence.removeAt(0);//remove first 

 } 

} 
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 To characterize malicious behaviors, we build malicious applications that are developed 

in pairs; each pair consists of one normal app and its abnormal counterpart. Both have 

identical behaviors except an inserted malicious behavior that we would like to characterize. 

Figure 2 shows the steps to characterize malicious behaviors. Unlike simply counting method 

calls in [12], we count call sequences as characterization of app behaviors. 

  

 We insert the malicious behavior that we target to characterize in the source code as the 

abnormal one, and leave the original code as the normal one. That is the pair are identical 

except the abnormal one has an embedded malicious behavior. After compiling their source 

codes of the pair applications, we apply the presented binary analysis on their executables and 

characterize the difference of their behaviors as the malicious signature for the embedded 

behavior. 

 Since we use the call sequences analysis we proposed to generate the pattern of sensitive 

behaviors, under different given sampling condition, we generated different pattern for same 

behaviors, for example, we conclude the call sequence for both of class invocation and 

method invocations, this will generate different patterns, on the other hand, the length of 

sampling sequence also brings out different patterns. The example shown in Table 1 gives the 

different pattern for the same behavior on accessing location. 

 We build a pattern library as the collections of these malicious signatures and use them 

later to detect whether the target app includes the malicious signature. If so, the target app 

may be able to execute the malicious behavior; cannot execute the malicious behavior, 

Fig. 1: The system architecture of AppBeach 
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otherwise. It is a sound approach by counting with respect to the malicious signature. Note 

that the learned malware signature depends only on the embedded malicious behavior but not 

the application itself. 

 

Table 1: Different pattern for accessing location on sampling variation 

(both considered the invocation on methods but classes) 

 

1-sequence 

setDelegate 1 

setDesiredAccuracy 1 

startUpdatingLocation 2 

2-sequence 

DesiredAccuracy Delegate 1 

didReceiveMemoryWarning startUpdatingLocation 2 

setManager init 1 

setDistanceFilter DesiredAccuracy 1 

startUpdatingLocation setDistanceFilter 2 

 

 

4. Evaluation  

 We have realized our idea in the tool AppBeach that stands on App Behavior Checker. 

AppBeach contributes the society on analyzing iOS apps in three folds: (1) tools that are 

publicly available for download, allowing examination of applications for public use; (2) 

patterns of sensitive behaviors on call sequence counts that are collected from difference of 

pairs of self-developed apps; and (3) the app database that reports the analysis results on 

analyzing commercial apps downloaded from App Store. 

 AppBeach provides several scripts on the website with detailed instructions for 

evaluations. These scripts can be used to reproduce the analysis results. First, it has a 

decryption script to decrypt iOS executable downloaded from Apple App Store automatically. 

Note that executables that are downloaded from Apple App Store have parts of machine 

instructions are encrypted and are unable to be analyzed directly. Decryption is the first and 

necessary step to analyze online apps. AppBeach then runs a python script tracker that 
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resolves and counts system calls that have been invoked in the executable. This python code 

has to be run with the disassembler IDA Pro. The python code counts one call sequence of 

system calls. Third, AppBeach provides the python script to compare call counts of apps to 

patterns, finding whether the target sensitive behaviors could perform by the executables. 

 We have built several patterns of sensitive behaviors of apps. These patterns are specified 

as sequence counts of classes and methods. Two major categories are (1) retrieving sensitive 

information, including the user information (e.g. Address book, Calendar) and device 

information (e.g. GPS Location), (2) conveying information outward the mobile devices (e.g. 

transmit data via HTTP or TCP). For each purpose there are several ways to implement, while 

the essentials are what the system method calls have been invoked in these implementations. 

We implement and insert these sensitive behaviors from built-in frameworks or public 

packages. A call sequence pattern (shown in Figure 3) is the difference of the normal 

self-developed app and the modified version with the sensitive behavior inserted. The pattern 

page shows the behaviors we have collected and used in our examination. Each pattern is 

represented as method (or class) sequences and their counts. These patterns can be further 

extended to other behaviors, such as advertisements. 

Fig. 2: The processes of building the malicious pattern library 
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 Fig. 4: The Sceenshot of App Behaviors in AppBeach 

Fig. 3: Sampled Patterns of sensitive behaviors 
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 Finally, AppBeach provides the analysis database (shown in Figure 3) that reports our 

analysis results on most popular apps in each category listed in the Apple App Store. These 

6000+ iOS applications are directly downloaded from Apple app store to be analyzed. We 

report the matched sensitive behaviors with probabilities: for each behavior pattern, an index 

100% indicates that the app has its resolved call sequences containing all the call sequences 

specified in the pattern. In many cases, an app invokes only parts of call sequences specified 

by a pattern. For instance, an index 50% associated with an app for a specify behavior 

indicates that only half of the call sequences of the pattern are matched by the resolved 

sequences of the app. 

 

5. Conclusion 

 We present the tool AppBeach that automates the process of extracting and decrypting 

iOS applications, and disassembling and resolving call invocations for characterizing 

behaviors of applications with call sequence counts. We build patterns on several sensitive 

behaviors and check whether these behaviors are embedded in thousands of popular mobile 

applications. The analysis results are public available in http://soslab.nccu.edu.tw/appbeach. 
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