
 

Special Issue 
Communications_of_the_CCISA 

Vol._22__No._3__Jul._2016 

 

 

1 

Selectively Secure Lightweight Strong Designated Verifier Signature 

Scheme from Identity-Based System 

 

Han-Yu Lin1* and Yao-Min Hung2 

Department of Computer Science and Engineering,  

National Taiwan Ocean University, 

2, Beining Road, Keelung, Taiwan 
1lin.hanyu@msa.hinet.net, 2n7773246@gmail.com 

 

ABSTRACT 

In some special electronic applications like personal medical records, authenticity and 

privacy are considered the basic security requirements. A strong designated verifier signature 

(SDVS) scheme is applicable to the above scenarios. Such a scheme allows a signer to create 

a so-called designated signature which can only be verified by an intended verifier. Besides, 

the designated verifier has no way to transfer his conviction to any third party. It is thus can be 

seen that SDVS schemes play an important role in privacy-preserving applications. In this 

paper, we propose a lightweight SDVS scheme from identity-based systems. More 

specifically, our scheme owns lower computational costs as compared with previous 

mechanisms. Furthermore, the selective security against universal forgery attack is also 

realized in the random oracle model. 

 

Keywords: strong designated verifier, privacy-preserving, identity-based, lightweight, 

digital signature. 

 

 

1. Introduction 

To withstand the public key substitution attacks and solve the certificate management 

problem, in 1984, Shamir [11] introduced the famous identity-based cryptosystem. In this 

system, each user’s public key is his/her public identifier that can be explicitly authenticated 

without extra verification processes. A system authority (SA) is responsible for deriving all 

users’ private keys with a trapdoor one-way function and then sends the private key to each 

user via a secure channel. Therefore, it is difficult for any adversary to compute the 

corresponding private key from its public one without knowing the trapdoor.  

Considering the requirement of privacy-preserving applications, in 1990, Chaum and 

Antwerpen [1] presented a special type of signatures called undeniable signature. Such a 
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signature scheme provides the signer with the right to decide who can verify his generated 

signatures. That is, a verifier must obtain the original signer’s agreement and cooperatively 

his signatures. 

In 1996, Jakobsson et al. [3] further addressed the concept of designated verification and 

proposed a Designated Verifier Signature (DVS) scheme with the property of 

non-transferability. In a DVS scheme, an intended verifier is able to simulate another 

transcript with his/her private key. Consequently, it is difficult for anyone to identify the real 

signer from two candidates. Only the intended verifier of the signature will be convinced of 

the signer’s identity. However, in 2003, Wang [13] pointed out some security flaws of their 

scheme. 

In the same year, Saeednia et al. [10] introduced the notion of strong DVS (SDVS) 

schemes in which the signature verification process can only be performed with the assistance 

of the designated verifier’s private key. An SDVS scheme still has the property of 

non-transferability, i.e., a designated verifier cannot convince any third party of the signer’s 

identity, since he can also create a computationally indistinguishable transcript. 

In 2004, Susilo et al. [12] combined the SDVS scheme with identity-based 

cryptosystems to propose the first identity-based SDVS scheme using the Bilinear 

Diffie-Hellman Problem (BDHP). In 2007, Lee and Chang [6] introduced an SDVS variant in 

which the designated verifier can recover the original message from its signature. 

Consequently, the signed message is unnecessary to be transmitted along with the signature. 

To reduce the signature length, in 2009, Kang et al. [4] also addressed an SDVS variant. In 

2011, Lin et al. [8] proposed a new SDVS scheme using the Discrete Logarithm Problem 

(DLP). Their scheme outperforms related works in terms of computational costs and signature 

length. Up to present, several SDVS variants [2, 5, 14] have been introduced. 

In this paper, we consider the bilinear pairing cryptosystems from elliptic curves and will 

present an identity-based lightweight SDVS scheme. In our scheme, we attempt to reduce the 

operation of bilinear pairing computation, so as to gain more savings of computational costs. 

Additionally, we will also demonstrate that the proposed mechanism fulfills the selective 

security against universal forgery attacks in the random oracle model. 

 

 

2. Preliminaries 

In this section, we review the properties of bilinear pairing and its security assumption. 

 

Bilinear Pairing 

Let (G1, +) and (G2, ) separately denote two groups of prime order q and e: G1 × G1 → 
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G2 be a bilinear map satisfying the following properties: 

(i) Bilinearity: 

e(P1 + P2, Q) = e(P1, Q)e(P2, Q); 

e(P, Q1 + Q2) = e(P, Q1)e(P, Q2); 

(ii) Non-degeneracy: 

If P is a generator of G1, then e(P, P) is a generator of G2. 

(iii)Computability: 

Given P, Q  G1, the value of e(P, Q) can be efficiently computed by a polynomial-time 

algorithm. 

 

Bilinear Diffie-Hellman Problem; BDHP 

Given P, aP, bP, cP  G1 for some a, b, c  Zq, the bilinear Diffie-Hellman problem is 

to compute e(P, P)abc  G2. 

 

Bilinear Diffie-Hellman (BDH) Assumption 

For every probabilistic polynomial-time algorithm A, every positive polynomial F() and 

all sufficiently large k, the algorithm A can solve the BDHP with an advantage of at most 

1/F(k), i.e.,  

Pr[A(P, aP, bP, cP) = e(P, P)abc; a, b, c  Zq, (P, aP, bP, cP)  G1
4]  1/F(k). 

The probability is taken over the uniformly and independently chosen instance and over the 

random choices of A. 

 

Definition 1. The (t, )-BDH assumption holds if there is no polynomial-time adversary that 

can solve the BDHP in time at most t and with an advantage . 

 

 

3. The Proposed Scheme 

We first define involved parties and algorithms of our scheme and then give a concrete 

construction. 

 

3.1 Involved Parties 

In the proposed SDVS scheme, there are three parties including a system authority (SA), 

a signer and a designated verifier. All of the three parties is a probabilistic polynomial-time 

Turing machine (PPTM). The SA is responsible for generating system parameters and 

distributes the private key to every user. The signer can incorporate a designated verifier’s 

public key with his private key to create an SDVS intended for the designated verifier. After 
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receiving the SDVS, the designated verifier can authenticate it with his private key. 

Meanwhile, it is unable for the designated verifier to convince any third party of his proof. 

 

3.2 Algorithms 

The proposed scheme is composed of four algorithms stated as follows: 

– Setup: Taking as input a security parameter k, the algorithm outputs corresponding public 

parameters params. 

– SDVS-Generation (SDVS-G): The SDVS-G algorithm takes as input the system 

parameters params, a message m, the public key of designated verifier and the private key 

of signer. It generates an SDVS . 

– SDVS-Verification (SDVS-V): The SDVS-V algorithm takes as input the system 

parameters params, a message m, an SDVS , the private key of designated verifier and the 

public key of signer. It outputs True if  is a valid SDVS for m. Otherwise, an error symbol 

⊥ is returned as a result. 

– Transcript-Simulation (TS): The TS algorithm takes as input the system parameters 

params, a message m, its SDVS  and the private key of designated verifier. It outputs 

another valid SDVS * for m. 

 

3.3 Construction 

We present a concrete construction of the proposed scheme as follows: 

 

– Setup: Taking as input a security parameter k, the SA chooses two groups (G1, +) and (G2, 

) of prime order q for |q| = k. Let P be a generator of order q over G1, e: G1  G1  G2 a 

bilinear pairing and H1: {0, 1}*  G1 and H2: {0, 1}*  G1  Zq two secure hash functions. 

The system parameters params is {G1, G2, q, P, e, H1, H2}. The SA selects s as its master 

private key and the public key is computed as PSA = sP. Each user Ui’s key pair is (Si = sQi, 

Qi = H1(IDi)). 

 

– SDVS-Generation (SDVS-G): For signing a message m R {0, 1}*, a signer UA first 

chooses r R Zq to compute 

 K = rPSA,    (1) 

 Z = e(QB  rP, H2(m, K)SA), where QB is the designated verifier. (2) 

 The SDVS for the message m is  = (K, Z). 

 

– SDVS-Verification (SDVS-V): In order to verify the SDVS  = (K, Z), UB can check 

whether 
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 Z = e(SB  K, H2(m, K)QA).  (3) 

 If the quality holds, the SDVS for m is valid. We show that the verification of Eq. (3) works 

correctly. From the left-hand side of Eq. (3), we have 

Z 

 = e(QB  rP, H2(m, K)SA) (by Eq. (2)) 

 = e(QB, H2(m, K)SA)/e(rP, H2(m, K)SA) 

 = e(QB, H2(m, K)SA)/e(K, H2(m, K)QA) (by Eq. (1)) 

 = e(SB, H2(m, K)QA)/e(K, H2(m, K)QA) 

 = e(SB  K, H2(m, K)QA) 

which leads to the right-hand side of Eq. (3). 

 

– Transcript-Simulation (TS): To produce a transcript intended for himself, UB chooses a 

new K' R G1 to compute 

 Z' = e(SB  K', H2(m, K')QA).  (4) 

 Then, ' = (K', Z') is another valid SDVS for m. 

 

 

4. Security Proof and Evaluation 

In this section, we first define the security requirements and then prove the security of 

our scheme. In addition, some comparisons with previous works are also made. 

 

Definition 2. An SDVS scheme is said to achieve the security requirement of unforgeability 

against existential forgery if there is no probabilistic polynomial-time adversary A with 

non-negligible advantage in the following game played with a challenger B: 

Setup: B first runs the Setup(1k) algorithm and sends the system’s public parameters params 

to the adversary A. 

Phase 1: The adversary A can adaptively ask hash random oracles, i.e., each query might be 

based on the result of previous queries: 

Forgery: A produces a pair (m*, *) with the signer’s identity IDA* and the designated 

verifier’s identity IDB*. The adversary A wins if * is a valid SDVS for m*. 

 

Definition 3. An SDVS scheme satisfies the security requirement of signer ambiguity if there 

is no probabilistic polynomial-time adversary A that can determine the identity of signer for a 

given SDVS with respect to two candidate signers. 

 

Definition 4. An SDVS scheme is said to achieve the security requirement of 
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non-transferability if a designated verifier can simulate a computationally indistinguishable 

transcript intended for himself with his private key. 

 

Theorem 1. The proposed ID-based SDVS scheme is (t, qH1
, qH2

, )-selectively secure against 

universal forgery attacks in the random oracle model if there is no probabilistic 

polynomial-time adversary A that can break the BDHP with non-negligible advantage. 

Proof: Assume that there is a probabilistic polynomial-time adversary A who can forge a 

valid SDVS of our proposed scheme with the non-negligible advantage after making at most 

qHi
 Hi random oracles (for i = 1 and 2). Then by utilizing A as a subroutine, it is feasible for 

us to generate another algorithm B solving the BDHP. Let all involved parties and notations 

be defined the same as those in Section 3. The goal of B is to outpute e(P, P)abc
 by taking the 

BDHP instance (P, aP, bP, cP) as inputs. In this proof, we employ the technique of Forking 

Lemma [9] to prove this theorem. Let B simulate a challenger to A in the following game. 

Setup: The challenger B first performs the Setup algorithm to obtain params = {G1, G2, q, P, 

e} and prepares a random tape  consisting of a long sequence of random bits. Then, B sets 

PSA = aP and simulates two runs of the proposed scheme to A with the input values (params, 

, PSA). 

Phase 1: A can query the following random oracles adaptively: 

– H1 oracle: When A queries H1(IDi) oracle, B searches the maintained H1_list for a matched 

entry. Otherwise, B chooses v1 R Zq, stores the record of (IDi, v1, v1P) into H1_list and 

returns v1P as a result. Note that if IDi {UA, UB}, B directly returns {bP, cP}, i.e., 

implicitly define QA = bP and QB = cP. 

– H2 oracle: When A makes the H2(m, K) query, B first checks the maintained H2_list for a 

possible record. Otherwise, B chooses v2 R Zq, stores the entry (m, K, v2) into H2_list and 

returns v2 as a result.  

Forgery: Finally, A produces a forgery  = (K, Z) for his arbitrarily chosen message m. 

Analysis of the game: B again simulates the second run with A on the same input. Since we 

supply the adversary A with the identical random tape, he will query the same oracles as 

those during the first run. When A asks the critical H2(m, K) oracle this time, B returns a new 

answer v2* instead of original v2. By the “Forking lemma”, when A at last generates a 

different forgery * = (K, Z*) with H2(m, K) = v2*, B will have two equalities below: 

 Z = e(SB  K, v2QA), 

 Z* = e(SB  K, v2*QA).  

Further rewriting these equalities, we will learn that 

  Z/Z* = e(SB  K, (v2  v2*)QA) 
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   = e(acP  K, (v2  v2*)bP) 

   = e(acP, (v2  v2*)bP)/e(K, (v2  v2*)bP) 

   = e(abcP, (v2  v2*)P)/e(K, (v2  v2*)bP) 

  (Z/Z*)e(K, (v2  v2*)bP)
*)( 22),(

vvabc
PPe


 . 

Hence, B could solve the BDHP instance by computing  

 
1

22 *)(
22 )]*)(,(*)/[(),(




vvabc bPvvKeZZPPe . 

 Q.E.D. 

 

Theorem 2. The proposed ID-based SDVS scheme satisfies the security requirement of signer 

ambiguity even under the key-compromise attack. 

Proof: This proof demonstrates that even if an adversary has the knowledge of signer’s 

private key, he still cannot distinguish the real signer from a designated verifier for a given 

SDVS. In our scheme, Eq. (3), can be derived as 

 Z = e(SB  K, H2(m, K)QA) 

  = e(QB, H2(m, K)SA)/e(rP, H2(m, K)SA). 

It is obvious that any adversary has to know the random number r before he can compute 

this equality. Hence, our scheme satisfies the property of signer ambiguity even under the 

key-compromise attack. 

 Q.E.D. 

 

Theorem 3. The proposed ID-based SDVS scheme satisfies the security requirement of 

non-transferability. 

Proof: In the Transcript-Simulation (TS) algorithm, a designated verifier is capable of 

creating a different SDVS * intended for himself after receiving a valid SDVS . The 

probability that the two SDVSs are identical is at most |G1|1, i.e.,  

Pr [* = ]  |G1|1.  

 Q.E.D. 

 

We compare our scheme with some previous mechanisms including Kang et al.’s (KBD 

for short) [4] and the Lee et al.’s (LCL for short) [7] ones. Table 1 lists the detailed 

comparisons. From this table, it can be seen that the proposed scheme outperforms compared 

works in terms of computational efforts and security. 
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5. Conclusions 

In this paper, we proposed a new efficient identity-based SDVS scheme for 

privacy-preserving applications. It only takes one time-consuming bilinear pairing 

computation for the signer and the designated verifier to separately generate and verify the 

SDVS. Moreover, the selective security to withstand the universal forgery attacks is formally 

proved in the random oracle model. We also demonstrated that our proposed scheme 

outperforms previously related works in terms of security and computational efforts. It is thus 

believed that the proposed scheme would be a better alternative for practical implementation 

of privacy-sensitive applications.  

 

Table 1. Evaluation of Security and Computational Costs 

          Scheme 

Item 
KBD LCL Ours 

Computational cost* 5B + 8M + 3H 6B + 5M + 3H 3B + 5M + 3H 

Secure against universal 

forgery attack 
X V V 

Secure against 

key-compromise attack 
X V V 

Remark*: The symbols of B, M and H separately mean the computation of one bilinear 

pairing, multiplication and one-way hash function. 
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