

Special Issue
Communications_of_the_CCISA

Vol._24__No._1__Jan._2018

61

A Novel VENOM Attack Identification Mechanism in Cloud

Virtualization Environment

Cheick Abdoul-Kader 1, Shih-Hao Chang 2*
1, 2Department of Computer Science and Information Engineering, Tamkang University

New Taipei City, Taiwan 25137
1kader.oued@hotmail.fr、2shhchang@mail.tku.edu.tw

ABSTRACT

This paper investigates the security issue of virtualization in the cloud computing. We focus

on how to identify the VENOM attack in the cloud-computing environment, and how to protect

the hypervisor from this VENOM attack. Firstly, we have implemented VENOM vulnerability

in the environment of QEMU/KVM and tried to identify its behaviors (action) in the cloud.

Secondly, we also tried to protect the hypervisor, which is the most vulnerability part for

virtualization environment. The proposed mechanism provides identification of the VENOM

attack and lock the FDC port (0x3f5), which is responsible to send I/O command to the

hypervisor.

Keywords: VENOM, QEMU, Virtualization, I/O command, Malware Attack

1. Introduction

Cloud computing is the delivery of on-demand computing resources – servers, storage,

databases, networking, software, analytics and more over the Internet. It was inspired by the

cloud symbol, which represents the general term for anything that involves delivering hosted

services over the Internet. Cloud Computing exploits many existing technologies such as web

services, web browsers, and virtualization, which contributes to the evolution of cloud

environments [3]. Virtualization is technology that allows you to create multiple simulated

environments or dedicated resources from a single, physical hardware system. Software called

a hypervisor connects directly to that hardware and allows you to split one system into separate,

distinct, and secure environments known as virtual machines (VMs). These VMs rely on the

hypervisor’s ability to separate the machine’s resources from the hardware and distribute them

appropriately.

 Number of open sources virtualization tools or hypervisors available today, such as Xen,

* Corresponding author.

Special Issue
Communications_of_the_CCISA

Vol._24__No._1__Jan._2018

62

KVM [9], QEMU [4], have announced in the market. It’s typically incorporates infrastructure

as a service (IaaS), platform as a service (PaaS), and software as a service (SaaS). The cloud

computing has five essential characteristics:

 On-demand self-service: A consumer armed with an appropriate delegation of rights

(permission) can unilaterally provision computing capabilities, such as server time

and network storage. As its automatically feature that do not require human

interaction with each service’s provider.

 Broad network access: Capabilities are available over the network and accessed

through standard mechanisms that promote use by heterogeneous thin or thick client

platforms (e.g., mobile phones, laptops, PDAs...).

 Resource pooling: The provider’s computing resources are pooled to serve multiple

consumers using a multi-tenant model, with different physical and virtual resources

dynamically assigned and reassigned according to consumer demand. There is a sense

of location independence in that the customer generally has no control or knowledge

over the exact location of the provided resources but may be able to specify location

at a higher level of abstraction (e.g., country, state, or datacenter). Examples of

separately allocable resources include storage, processing, memory, network

bandwidth, and virtual machines.

 Rapid elasticity: Capabilities can be rapidly and elastically provisioned, in some cases

automatically, to scale out quickly and then rapidly released to scale in quickly. To

the consumer, the capabilities available for provisioning often appear to be unlimited

and can be purchased in any quantity at any time.

 Measured service: Cloud systems automatically control and optimize resource use by

leveraging a metering capability at some level of abstraction appropriate to the type

of service (e.g., storage, processing, bandwidth, and active user accounts). Resource

usage can be monitored, controlled, and reported, providing transparency for both the

provider and consumer of the utilized service.

VMware is a commercial leader but it is also based on open source. The only inconvenient

is located in security of Cloud computing (Security of Data) because you share the same server

in the cloud, thus it is possible that your data be shared somewhere. The virtualization network

is the most critical threat in Cloud Computing and in particular hypervisor it the most

vulnerability part for virtual network. The hypervisor or called virtual machine manager (VMM)

is the main component of virtualization, it divided the operating system (OS) from the hardware

by taking the responsibility of allowing each running OS time with the underlying hardware. It

acts as a traffic cop to allow time to use the CPU, memory, GPU, and other hardware. Thus, the

Special Issue
Communications_of_the_CCISA

Vol._24__No._1__Jan._2018

63

security of hypervisors is very crucial as the whole system could be compromised even one

vulnerability is exploited. It’s imperative to ensure that this component is as secure as possible

due to any defect in hypervisor can be used by attacker to do what they want in the server. The

hypervisor sits between the guest and host, operating as the bridge (as show in the Figure 1),

and connect both sides to communicate each other; any defects in hypervisor security may

impact both the host and guest machine. Hypervisor is basically a software program, so it has

all the traditional software bugs and the security vulnerabilities as any software have.

Figure1: Components of Virtualization

2. Literature Review

There have been a few works which discuss about the security issue of hypervisor in the

cloud computing. Tsafrir et al. in [14] called theft-of-service attack as “cheat attack” where an

ordinary process hijacks some desirable percentage of CPU without the notice of an

administrator. The attacker, during theft-of-service attack targets the hypervisor of VM, which

can be categorized, further, as concealment action.

In [5] rootkits modify critical system code and/or data structures in OS behavior for this

reason; A possible rootkit detection method is to check if all critical components of an operating

system are in their expected state. In [12][15] authors design a plugin specifically to malware

detection and analysis by use information extracted from window swap file in the windows

kernel memory pools.

There are several case studies such as [6] that provided the comparative analysis of KVM

with respect to other hypervisors in term of different vulnerabilities. The main goal of this thesis

is to build a novel mechanism to identify VENOM attack in the cloud computing, but also to

Special Issue
Communications_of_the_CCISA

Vol._24__No._1__Jan._2018

64

provide a solution to protect the hypervisor for such kind of attack in the cloud. However, the

difference between the thesis and related work [6] is the source code of VENOM Vulnerability

used by an attacker from the guest machine. Moreover, this thesis presents a new problem in

the “FDC” which are outdated for most of virtualization products, but can be exploitable by an

attacker to run a malicious code.

In 2011, Jason Geffner, CrowdStrike [8] Senior Security Researcher, discovered the

vulnerability while performing a security review of virtual machine hypervisors and this

vulnerability namely is VENOM. VENOM Vulnerability is the acronym for “Virtual

Environment Neglected Operations Manipulation”. Also named “CVE-2015-3456”, exploits a

flaw in the virtual disk driver code in virtual machines to allow an attacker to break out of the

guest operating system and interact with the host. The interesting fact about VENOM is that it

applies to a wide range of virtualization platforms (using the default configurations) and it

allows for arbitrary code execution. The vulnerability specifically affects open source

hypervisor called Quick Emulator (QEMU). The bug is in QEMU’s virtual Floppy Disk

Controller (FDC), which is used in a number of common virtualization products (XEN, KVM,

and Virtual Box...).

As the fact that the vulnerability exists in the hypervisor’s codebase, it affects all host and

guest OS. With this performance, which can make possible an attacker to break out of protected

guest environments and take full control of the operating system hosting them. As VENOM

attack exploits virtual disk driver codes and flaws personal data in the virtual machine, it seen

like one of the most of the dangerous threats in cloud computing especially for VM.

3. VENOM ATTACK BEHAVIORS

This paper proposed an algorithm to identify VENOM vulnerability in the cloud. This

research also suggests a method to protect the hypervisor for such kind of attack. Our

experiment will be conducted with 2 different VMs in the cloud, with limited processors cores

and memories:

 The host machine, worked as consists of Ubuntu 14.4 with kernel 4.1.0 and QEMU

emulation software on Inter processor with limited RAM

 The guest machines consist of one virtual CPU and 1GB of RAM.

VM1 is a standard user, VM2 is an attacker that uses machine to launch a malicious

program (VENOM attack), through FDC I/O port to affects all host and guest operating systems,

as show in Figure 2.

Special Issue
Communications_of_the_CCISA

Vol._24__No._1__Jan._2018

65

Figure2: Vulnerable Cloud Infrastructure

For our experiences, we also utilize Libvirt [7] due to its a toolkit to manage virtualization

guest operating systems running on a host. The level of VENOM's vulnerability depends to the

attacker. VENOM attacks access to device I/O ports from GM to get inside the Hypervisor as

show in Figure 3.

Figure 3: Attacking Hypervisor Emulation of Hardware Devices

The problem resides in FDC (Floppy-Disk-Controller). The guest machine communicates

with the FDC (I/O ports) by sending commands such as (Read, Write, format...) to the device

input/output emulation in the hypervisor. After every command, the FDC set each variable to 0

for next command. An attacker can send these commands to the FDC to overflow the data buffer

Special Issue
Communications_of_the_CCISA

Vol._24__No._1__Jan._2018

66

and execute arbitrary code in hypervisor process. Successful exploitation of the VENOM

vulnerability can expose access to corporate intellectual property, sensitive and personally

identifiable information which can impact organizations and end users that rely on affected

VMs for the allocation of shared computing resources, connectivity, storage, security and

privacy.

Therefore, this paper proposed an algorithm, which can identify VENOM vulnerability

and protect the hypervisor for such kind of attack. The proposed algorithm will base on two

steps:

1. The mechanism to identify VENOM vulnerability: in this step, we launched VENOM

vulnerability from one of a guest machines. The source code of VENOM, which is

provided by Jason Geffner CrowdStrike [8], we analyzed the behavior of the host

machine through the Libvirt API [7] in KVM environment.

2. The mechanism to protect the hypervisor: in this step, we built a program to protect

the hypervisor for such kind of attack. We programed a code to lock the FDC

controller port in the hypervisor. The main purpose of this code is to lock the 0x3F5,

which is mapped to Read/Write the I/O command from the guest machine.

4. Evaluation

In this section, we present our VENOM identification study of the proposed framework.

According to our literature review, the attackers can trigger the VENOM vulnerability by

sending commands and specially crafted parameter data from the guest system to the vulnerable

Floppy Disk Controller to cause the data buffer overflow and execute arbitrary code in the

context of the host’s hypervisor process. The flaw is very dangerous because attackers could

exploit it against a wide array of virtual machines, it is trigger-able on default configurations,

and would allow the arbitrary code execution. We consider VENOM different from other

vulnerabilities in the past that effect virtualized environments, since it exists in the hypervisor’s

codebase it is independent from the specific host operating system (Linux, Windows, Mac OS,

etc.).

Therefore, we investigated KVM-Hypervisor with LibVirt API to monitor the VM. User1

(U1) and User2 (VENOM) applied both Ubuntu 14 based on KVM hypervisor. As mentioned

that there is non-application has been launched on these VMs, that is the main reason why the

CPU of the hypervisor it 0%, and the memory is 2048MB of 7860MB (that mean each VM

have respectively the same memory 1024MB. With LibVirt toolkit managed all of my VMs

(VENOM and U1) running in my host machine. The figures 4 and figure 5 below show how

Special Issue
Communications_of_the_CCISA

Vol._24__No._1__Jan._2018

67

LibVirt work and how to identify VENOM vulnerability.

Figure 4: Statistic of KVM hypervisor Figure 5: Identify VENOM vulnerability

To prove that the attack was successful in a system with a default set up, VENOM was

used to illustrate and simulate a real life attack. Figure 6 displayed the commands of the virtual

machines that are run on the hypervisor (VENOM and user1).

Figure 6: General Information of VMs

Figure 7 and Figure 8 show before the attack both from the host using Ubuntu Linux OS.

1. virsh list –all command: provide the states and name of each VM in KVM.

2. virsh dominfo “name of VM” command: provide the general Information of Guest

VM. (Ex. ID, name, OS type, memory etc.…)

3. virt-top command: As shown in figure 7, this command can display the CPU static

and memory usage of detail of each VM in the Hypervisor.

Special Issue
Communications_of_the_CCISA

Vol._24__No._1__Jan._2018

68

Figure 7: Static of CPU and Memory of VMs

4. free command: this command will display the virtual memory size in the host machine.

As shown in Figure 8, it displays the percentage of CPU and memory for VENOM and

User 1 are equal, because both of them have not do any operation yet.

Figure 8: Virtual Memory Size in the Host Machine

5. iostat command: this command will display the OS storage I/O statics for the host

hypervisor. As shown Figure 9, it display buffers and the caches will be the most

obviously parts to identify VENOM vulnerabilities. Figure 9 also help us to identify

VENOM vulnerability overflows the buffer before attack.

Figure 9: I/O Statics Command of Host Machine

Special Issue
Communications_of_the_CCISA

Vol._24__No._1__Jan._2018

69

All previous these commands (including CPU, Buffer Size, Virtual Memory and I/O) can

identify VENOM attack before the malicious code attack vulnerabilities. Due to normally a

virtual floppy drive is added to new virtual machines by default, such as on Xen and QEMU,

even if the administrator explicitly disables the virtual floppy drive, an unrelated bug causes the

vulnerable FDC code to remain active and exploitable by attackers. Most VM escape

vulnerabilities discovered in the past were only exploitable in non-default configurations or in

configurations that wouldn’t be used in secured environments. As shown in Figure 10, before

we implemented the source code of VENOM vulnerability.

Figure 10: VENOM Vulnerability in the Hypervisor

As shown in Figure 11, after we launched VENOM attack source code in the sandbox, the

source code came from Jason Geffner, who discovered this vulnerability while performing a

security review of virtual machine hypervisors. Once we launched VENOM vulnerability from

the guest machine (U1) by GCC complier (GNU Compiler Collection). The GCC is a compiler

system produced by the GNU Project supporting various programming languages. GCC is a

key component of the GNU tool chain and the standard compiler for most Unix-like Operating

Systems.

Figure 11: Result of VENOM Vulnerability in the Hypervisor

Special Issue
Communications_of_the_CCISA

Vol._24__No._1__Jan._2018

70

 Figure 12 presents the result of VENOM vulnerability sent from the guest machine (U1)

to the hypervisor. As the results: “(CRASH DUMPED)’’ show us that the program (VENOM

vulnerability) access to a portions of processor data or RAM memory and are erroneously

copied to one or more files in the system. In computer, every application runs on a defined

memory boundary and if part of the application exceeds the boundary then program crashes or

in technical word “CRASH DUMPED”. In conclusion, this source code (VENOM

Vulnerability) exploits the flaw in the virtual disk driver code in virtual machines to break out

of the guest operating system and interact with the host

Figure 12: Statistic of hypervisor with VENOM Vulnerability

As shown in Figure 12 above, we can see that the usage of CPU in the Host machine

(Hypervisor) is 24%. That means during the attack the guest machine sent I/O data

through the FDC port and increased the CPU usage. Therefore, the VENOM

vulnerability consumes CPU and also the disk resource in the I/O ports.

After we implemented VENOM attack in the guest machine. It’s quite obviously

that the problem of VENOM vulnerability resides in FDC (Floppy-Disk-Controller) and

it described by this source code.

 Figure 13: VENOM Vulnerability Source Code

Special Issue
Communications_of_the_CCISA

Vol._24__No._1__Jan._2018

71

As shown in Figure 13 above, the source code includes the <sys/io.h> library, which

will be used by the main code. The code also defines the value of FIFO as: 0x3f5 (1013

in decimal). Thus, the code in the VM guest can write to the FIFO buffer by sending

data to the FDC via its FD_REG_FIFO I/O port. Writes are handled by the function

below, with each byte sent to the I/O port getting passed to this function as the value

parameter.

5. Conclusion

In this paper, we investigate the security issue of VENOM attack in virtualization

QENU virtualization environment. First, VENOM attack source code has been

implemented in the environment of QEMU/KVM to observe its behaviors in the

virtualization environment. Subsequently, the usage of CPU in the host hypervisor is

24%. Then, we tried to protect the hypervisor utilizing the VENOM protection

mechanism, which is the most vulnerability part for cloud virtualization environment.

The proposed mechanism can identify VENOM attack and try to lock the FDC port

(0x3f5), which is responsible to send I/O command to the hypervisor.

References

[1] Ajay Kumara M.A and C.D. Jaidhar, “Hypervisor and virtual machine dependent Intrusion

Detection and Prevention System for virtualized cloud environment,” 2015 1st

International Conference on Telematics and Future Generation Networks (TAFGEN),

Malaysia, May 26-28, 2015.

[2] A. Ahmad, N. Nasser and M. Anan, “An identification and prevention of theft-of-service

attack on cloud computing,” 2016 International Conference on Selected Topics in Mobile

& Wireless Networking (MoWNeT), pp. 11-13, April, 2016.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D.

Patterson, A. Rabkin, I. Stoica and M. Zaharia, “A view of cloud computing,”

ACM Communications, Vol. 53(4), pp.50-58, 2010.

[4] D. Bartholomew, “Qemu: a multihost, multitarget emulator,” Linux Journal, Vol.

2006(145), pp.3, 2006.

[5] S. Behrozinia and R.Azmi, “KLrtD: Kernel Level Rootkit Detection,” 2014 22nd Iranian

Conference on Electrical Engineering (ICEE), Shahid Beheshti University, Iranian, May

Special Issue
Communications_of_the_CCISA

Vol._24__No._1__Jan._2018

72

20-22, 2014.

[6] L. Deng, Q. Zeng, W. Wang and Y. Liu, “EqualVisor: Providing Memory Protection in an

Untrusted Commodity Hypervisor,” 2014 IEEE 13th International Conference on Trust,

Security and Privacy in Computing and Communications, IEEE, pp. 300-309, Beijing.

[7] R. Hat, “Libvirt: The virtualization API,” 2012.

[8] Jason Geffner, https://blog.trendmicro.com/understanding-the-venom-vulnerability/

[9] A. Kivity, Y. Kamay, D. Laor, U. Lublin and A. Liguori, “KVM: the Linux virtual machine

monitor,” Linux symposium, Vol. 1, pp. 225-230, 2007.

[10] PacketStorm, “Packetstorm,” http://tinyurl.com/qhygrsu, accessed: 29-10-2014.

[11] B. Payne, S. Maresca, T. Lengyel K and A. Saba, “Libvmi,” http://www.libvmi.com,

accessed: 09- 07-2014.

[12] M. Schmidt, L. Baumgartner, P. Graubner, D. Bock and B. Freisleben, “Malware detection

and kernel rootkit prevention in cloud computing environments,” 2011 19th International

Euromicro Conference on Parallel, Distributed and Network-Based Processing, IEEE, pp.

603– 610, 2011

[13] M. I. Sharif, W. Lee, W. Cui and A. Lanzi, “Secure in-vm monitoring using hardware

virtualization,” 16th ACM conference on Computer and communications security, ACM,

pp. 477-487, 2009.

[14] D. Tsafrir, Y. Etsion and D. G. Feitelson, “Secretly Monopolizing the CPU Without

Superuser Privileges,” 16th USENIX Security Symposium on USENIX Security Symposium,

pp. 17:1–17:18, Berkeley, CA, USA, 2007.

[15] M. R. Watson, N. Shirazi, A. K. Marnerides, A. Mauthe, D. Hutchison, “Malware detection

in cloud computing infrastructures,” IEEE Transactions on Dependable and Secure

Computing, pp. 192 –205, 2015.

